

Oggetto

Corso

Docente

PROGETTO DI UN EDIFICIO IN C.A. PER CIVILE ABITAZIONE

Comune di Santa Marinella (RM)

TECNICA DELLE COSTRUZIONI Ingegneria Civile

Prof. Fabrizio Paolacci

Studenti

Anno

Berti Andrea Campolese Mattia Paccapelo Marco

2006 / 2007

Sommario

Introduzione	2
Input di progetto	. 2
Normative adottate	
Caratteristiche dei materiali	. 3
Solaio	4
Predimensionamento	
Analisi dei carichi	
Carichi permanenti	
Sovraccarichi variabili	8
Riassunto carichi di progetto calcolati	
Calcolo delle sollecitazioni	
Modello di trave continua	
Combinazioni di carico	
Dimensionamento armature	
Momenti fuori calcolo	
Armature longitudinali	23
Momenti resistenti	
Taglio resistente	
Fasce pieneUlteriori indicazioni	
Verifica delle sezioni	
Predimensionamenti e analisi dei carichi	
Tamponature	
Travi	
Predimensionamento	
Pilastri	
Stima dei carichi	
Scala	
Problematiche geometriche e funzionali	
Gradini e pianerottolo	49
Carichi trave a ginocchio	
Analisi delle sollecitazioni	
Modellazione telaio	51
Combinazioni di carico	52
Diagrammi di calcolo	54
Dimensionamenti	56
Travi	
Modelli di calcolo	
Armature	
Momenti resistenti	
Verifica delle sezioni.	
Verifica allo stato limite ultimo sezione più sollecitata	
Pilastri	74
Modelli di calcolo	
Armature	75
Verifiche a pressoflessione	76
Scala	
Gradini	
Pianerottolo Trave a ginocchio	
Fondazione	/9 90
Tipologia adottata	
Carico limite	
Dimensionamento sezione e armatura	92
Verifica a punzonamento	93

Introduzione

Input di progetto

La seguente relazione riguarda il progetto di un edificio di 2 piani abitabili più sottotetto non abitabile, adibito all'uso di civile abitazione, situato a Santa Marinella (RM) in zona non sismica.

Tale costruzione è realizzata in cemento armato e la sua struttura portante è costituita da un telaio tridimensionale su cui si sono concentrati i calcoli e le analisi per la progettazione. Sono state dimensionati tutti i solai, la scala, un plinto di fondazione, le armature della travata e pilastrata più sollecitata.

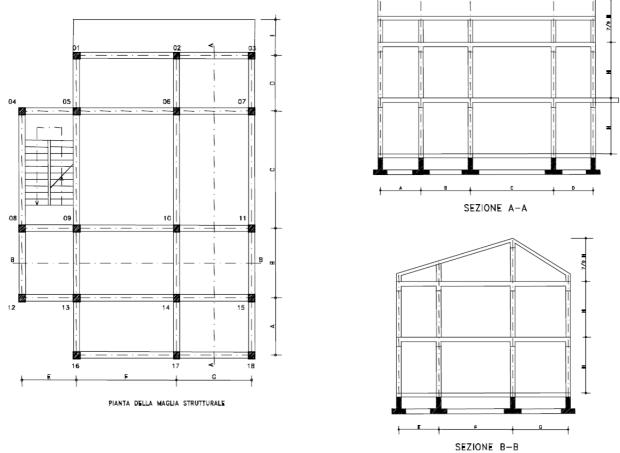


Fig. 1: Tipologia progettuale in esame

Α	В	С	D	E	F	G	Н	1
3,75	4,6	6,15	4,5	2	6,25	4,5	3	1,6

Tabella 1: Dimensioni geometriche dell'edificio (in m)

Normative adottate

• Eurocodice 2 - Progettazione delle strutture di calcestruzzo

Parte 1-1: Regole generali e regole per gli edifici - ENV 1992-1-1

Normativa di riferimento del progetto.

Eurocodice 1

Considerato nel caso dell'incidenza dei tramezzi.

• D.M. 14-09-2005: Testo unico sulle costruzioni

Utilizzata come supporto e integrazione dell'EC2 per la determinazione dei carichi agenti e per il predimensionamento del solaio.

• CIRCOLARE 4 luglio 1996, n. 156 AA.GG/STC

Utilizzata come fonte di riferimento dei pesi di alcuni materiali utilizzati.

Caratteristiche dei materiali

• CLS:

Resistenze di calcolo a compressione:

$$f_{cd} = \frac{R_{ck}}{\gamma_{m.c}} = \frac{30}{1.9} = 15,78 MPa$$

Modulo elastico:

$$E = 5700 \sqrt{R_{ck}} = 31220 MPa$$
 (EC2 - punto 4.2.1.3.2.)

Resistenze di calcolo a trazione:

$$f_{ctd} = \frac{f_{ctk}}{1.6} = 1,14 MPa$$
 resistenza a trazione del cls di calcolo dove:

$$f_{ctk} = 0.7 f_{ctm} = 1,824 MPa$$
 è la resistenza a trazione del cls caratteristica e:

$$f_{ctm} = 0.27\sqrt[3]{R_{ck}^2} = 2,606\,MPa$$
 è la resistenza a trazione del cls media

ACCIAIO:

B450C - barre ad aderenza migliorata

$$f_{yd} = \frac{f_{yk}}{Y_{ms}} = \frac{450}{1.15} = 391.3 MPa$$

Solaio

Trave continua

Il solaio è una piastra ortotropa, ovvero ha un comportamento differente nelle due direzioni principali x ed y. Si ha però che la rigidezza della struttura nella direzione di tessitura dei travetti è molto superiore rispetto a quella ortogonale. Ne consegue che il comportamento dei solai è approssimabile a quello di una trave continua su appoggi fissi costituiti dalle strutture che lo portano (travi).

Dati di progetto

Per l'orditura dei travetti si è preferita una dimensione unica per rendere omogeneo il comportamento del telaio:

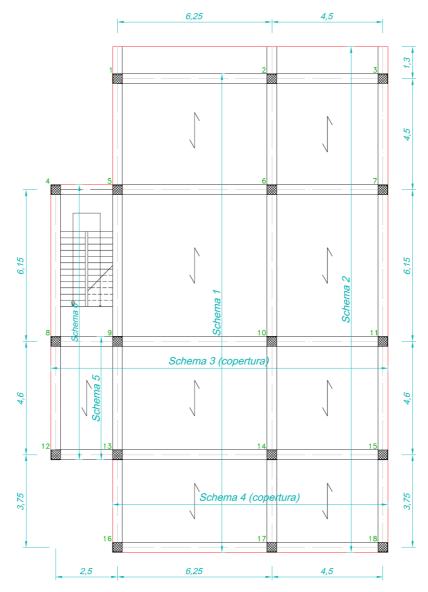


Fig. 2: Dimensioni, orditura travetti e schemi adottati

Essendo il fabbricato una villa a due piani con copertura a due falde si considerano i seguenti diversi schemi di solaio:

Posizione	Schema considerato			
Piano terra (Solaio A)		Schema 1: 4 campate con 5 appoggi Schema 5: Trave appoggiata		
Primo piano (Solaio B)	Schema 2: 4 campate con 5 appoggi + 1 sbalzo (balcone) Schema 5: Trave appoggiata			
Sottotetto (Solaio C)		pate con 5 appoggi pate con 3 appoggi		
Copertura (Solaio D)	ura Sopra vano scala: Fuori vano scala			

Tipologia costruttiva e materiali adottati

La tipologia di solaio adottata è quella di solaio misto in cemento armato gettato in opera e blocchi di alleggerimento in laterizio (pignatte).

I principali requisiti fondamentali di un solaio sono quelli di garantire un'ottima resistenza meccanica, con una modesta deformabilità a fronte di un minimo spessore e un peso ridotto. Devono essere garantite inoltre buone proprietà isolanti, termiche e acustiche nonché un'ottima resistenza al fuoco, il tutto ottimizzando i tempi e i costi di realizzazione.

Predimensionamento

Dato lo schema indicato in Fig. 1, si procede con il predimensionamento della sezione del solaio (il cui schema tipo è indicato in Fig.2) considerando la luce più grande.

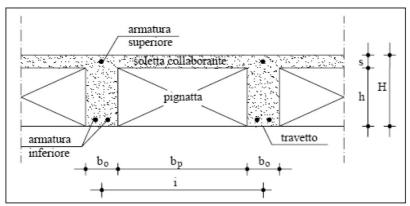


Fig. 3: Sezione indicativa di tratto di solaio

Il D.M. 14-9-2005 (al punto 5.1.9.1.1) e l' EC2 forniscono comode relazioni empiriche per una stima delle dimensioni (e quindi del peso, utile successivamente per l'analisi dei carichi):

Altezza solaio interno	$H_{min} = min(15 \text{cm}; L_{max}/26)$	L_{max} = 6,15 m H = L/26 = 23,65 cm H_{ad1} = 24 cm	
Altezza solaio balcone	$H_{min} = min(H_{adl} - 4; 16 cm)$	H _{ad2} = 20 cm, inferiore per considerare l'impermeabilizzazione.	
Altezza soletta	s≥40 mm	Si è scelto il valore usuale di s = 4 cm	
Interasse travetto	<i>i</i> ≤15· <i>s</i>	$i_{max} = 60 \text{ cm}$ $i_{ad} = 52 \text{ cm}$, valore usuale	
Larghezza travetto	$b_0 = min(\frac{1}{8}i, 8cm)$	$b_{min} = i / 8 = 6,5$ cm. Essendo $L_{max} > 6$ m, per contenere eccessive sollecitazioni di taglio si è optato per un valore cautelativo di $\underline{b_0} = 12$ cm.	
Dimensioni pignatta	$h_p \ge 120 mm$ $b_p \le 520 mm$	$\begin{aligned} & \underline{h_{p1} = 20 \text{ cm}} \\ & \underline{b_p = 40 \text{ cm}} \\ & \underline{hp_2 = 16 \text{ cm}} \text{ (balcone)} \end{aligned}$	

Analisi dei carichi

Dopo il predimensionamento è necessario determinare l'entità dei carichi che gravano sul solaio, distinguibili in:

- *Permanenti*: peso del solaio, dei materiali di finitura, dei tramezzi e di eventuali altri elementi gravanti su di esso in maniera permanente (ex. parapetti)
- Variabili: dipendono dalla destinazione d'uso dell'edificio e del solaio stesso

Carichi permanenti

Considerando una sezione di 1 m² di solaio, sono stati calcolati i pesi degli elementi strutturali, considerando per i pesi dei materiali i valori indicati dal D.M. 15-9-2005 e dalla Circolare n.156:

SOLAIO PIANO TERRA E PRIMO PIANO

Materiale	h(m)	L(m)	P(KN/m³)	P (KN/mq)
Travetto (cemento armato)	0,200	0,240	25,000	1,200
Soletta (cemento armato)	0,040	1,000	25,000	1,000
Pignatte (laterizio)	0,200	0,760	5,500	0,836
Pavimento (marmo s = 3cm)	0,030			0,800
Intonaco	0,015			0,300
Massetto (malta bastarda)	0,040	1,000	19,000	0,760
TOTALE				4,896

Tabella 2: Carichi permanenti solaio A e B interno

BALCONI

<i>M</i> ateriale	h(m)	L(m)	P(KN/m³)	P (KN/mq)	
Travetto (cemento armato)	0,160	0,240	25,000	0,960	
Soletta (cemento armato)	0,040	1,000	25,000	1,000	
Pignatte (laterizio)	0,160	0,760	5,500	0,669	
Pavimento (ceramica)				0,300	
Intonaco	0,015			0,300	
Impermeabilizzazione				0,300	
Massetto (malta bastarda)	0,040	1,000	19,000	0,760	
TOTALE				4,289	
	Parapet	tto			
Costituenti	Cm³	numero/m	Volume (m³)	P(KN/mc)	Peso al metro
Barra	158,400	9,000	0,001425600	78,500	KN/m
Piattini	240,000	1,000	0,000240000	78,500	
TOTALE			0,001665600		0,131

Tabella 3: Carichi permanenti del balcone

Come parapetto per i balconi si è optato per un ringhierino metallico costituito da 9 barre quadre 12x12 al metro, con base e passamano di due piattini sottili, il tutto in acciaio.

SOTTOTETTO

<i>M</i> ateriale	h(m)	L(m)	P(KN/m³)	P(KN/mq)
Travetto (cemento armato)	0,200	0,240	25,000	1,200
Soletta (cemento armato)	0,040	1,000	25,000	1,000
Pignatte (laterizio)	0,200	0,760	5,500	0,836
Intonaco	0,015			0,300
Massetto (malta bastarda)	0,040	1,000	19,000	0,760
TOTALE				4,096

Tabella 4: Carichi permanenti solaio sottotetto

COPERTURA

<i>M</i> ateriale	h(m)	L(m)	P(KN/m3)	P(KN/mq)
Travetto (cemento armato)	0,200	0,240	25,000	1,200
Soletta (cemento armato)	0,040	1,000	25,000	1,000
Pignatte (laterizio)	0,200	0,760	5,500	0,836
Tegole maritate (embrici e coppi)				0,600
Intonaco	0,015			0,300
Impermeabilizzazione				0,300
TOTALE				4,236

Tabella 5: Carichi permanenti solaio tetto

Sovraccarichi variabili

Incidenza dei tramezzi:

Dalla Circolare n. 156 si specifica che il carico costituito da tramezzi di peso minore di 1.5 KN/mq potrà essere ragguagliato ad un carico uniformemente distribuito sul solaio pari a 1,5 volte il peso complessivo dela tramezzatura se vengono adottate le misure costruttive per consentire un'adeguata distribuzione del carico (come in questo caso).

Per i solai di interpiano si sono considerate tramezzature in muratura di mattoni forati $11,00 \text{ KN/m}^3$ da 8 cm. Considerando piani alti 3 m, le mura saranno alte H = 2,7 m, quindi:

$$Q_k = (Volume/m) x peso = (2,7 x 0,08) x 11 = 2,376 KN/m$$

Secondo l'EC1, per elementi con peso compreso da 2 e 3 KN/m (per unità di superficie) si può adottare un carico variabile pari a $p_k = 1,2 \text{ KN/m}$.

Destinazione d'uso:

Dal D.M. 14-09-2005 - Punto 6.1.4 è possibile ricavare il valore del sovraccarico variabile dovuto al tipo di utilizzo della struttura.

Tabel	lla 6.1.II – Valori dei sovraccarichi d'esercizio per le diverse	categorie di	edifici.	
Cat.	Ambienti	q _k [kN/m ²]	Q _k [kN]	H _k [kN/m]
1	Ambienti non suscettibili di affollamento (locali abitazione e relativi servizi, alberghi, uffici non aperti al pubblico) e relativi terrazzi e coperture a livello praticabili.	2,00	2,00	1,00
2	Ambienti suscettibili di affollamento (ristoranti caffè, banche, ospedali, uffici aperti al pubblico) e relativi terrazzi e coperture a livello praticabili.	3,00	2,00	1,00
3	Ambienti suscettibili di grande affollamento (sale convegni, cinema, teatri, chiese, negozi, tribune con posti fissi) e relativi terrazzi e coperture a livello praticabili.	4,00	4,00	2,00
4	Sale da ballo, palestre, tribune libere, aree di vendita con esposizione diffusa (mercati, grandi magazzini, librerie, ecc.) e relativi terrazzi e coperture a hivello praticabili.	5,00	5,00	2,00
5	Balconi, ballatoi e scale comuni (e' necessario valutare si- tuazioni specifiche).	4,00	3,00	2,00
6	Sottotetti accessibili (per sola manutenzione).	1,00	2,00	1,00
	Coperture non accessibility	1,00	2,00	1,00
7	Coperture speciali (impianti, eliporti, altri): da valutarsi caso per caso.	-	-	-
8	Rimesse e parcheggi per autovetture di peso a pieno carico fino a 30 kN.	2,50	2 x 10,00	1,00
	Rimesse e parcheggi per transito di automezzi di peso su- periore a 30 kN; da valutarsi caso per caso	-	-	-
9	Archivi, biblioteche, magazzini, depositi, laboratori, offi- cine e simili: da valutarsi caso per caso ma comunque:	≥6,00	6,00	1,00

Fig. 4: Tabella dei sovraccarichi d'esercizio

Considerando il fabbricato di civile abitazione, si avrà:

Tipo di solaio	Categoria ambiente (vedi fig. 3)	Sovraccarico
Interpiano	1	<u>q</u> _k = 2 KN/mq
Balconi	5	<u>q</u> _k = 4 KN/mq
Copertura	7 (non praticabile)	<u>q_k = 1 KN/mq</u>
Sottotetto	6 (sola manutenzione)	<u>q</u> _k = 1 KN/mq

Azioni naturali

• Carico neve: (da considerare nel caso di copertura o di terrazza)

$$q_s = \mu \cdot q_{sk} \cdot C_E \cdot C_t$$
 con:

 q_{sk} = carico neve al suolo pari a 1,15 KN/m² (località: Santa Marinella (RM), Zona 2, Altitudine 15 m); considerando un tempo di ritorno pari a $T_r = 500$ anni, si adotta il valore pari a $q_{ref}(T_r) = \alpha_{Rn} \cdot q_{sk}$ con $\alpha_{Rn} = 0.273 \cdot \{1 - 0.5 \cdot \ln[-\ln(1 - 1/T_r)]\}$, quindi $\alpha_{rn} = 1,12$ e $q_{ref} = 1,29$ KN/mq

C_e: coefficiente di esposizione, classificata come "normale", quindi C_e = 1

Ct: coefficiente termico, Ct = 1

μ : coefficiente di forma per le coperture:

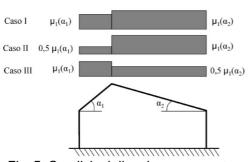


Fig. 5: Condizioni di carico per coperture a due falde

Va considerata la condizione di carico più gravosa.

Angoli delle falde:

 $\alpha_1 = 15^{\circ}$

 $\alpha_2 = 27^{\circ}$

Si adotta il primo caso e si ha $\mu = 0.8$.

Carico neve orizzontale: q_s = 1,032 KN/mq

Azione del vento:

Pressione del vento: $w_e = c_{pe} \cdot c_d \cdot q$ con:

 $q(z) = \frac{1}{2} \cdot \rho \cdot v_p(T_r)^2$ pressione cinetica di picco con densità dell'aria = 1,25 Kg/m₃ e:

 $v_p(z) = c_{ev}(z) \cdot v_R(T_r)$ velocità di picco del vento con $v_R(T_R) = \alpha_R(T_R) \cdot v_{ref}$; dato Tr = 50 anni, α_r = 1; la velocità di riferimento è v_{ref} = 27 m/s (Santa Marinella (RM), Lazio => Zona 2 con a_0 = 500 m e k_s = 0,02); il coefficiente di esposizione per le velocità dipende dalla categoria di esposizione del sito: la classe di rugosità è la B (aree urbane) e la categoria di esposizione è la III, quindi si ha k_r = 0,2 , z_0 = 0,1 e z_{min} = 5 m; essendo z > z_{min} , si ha $c_{ev}(z) = k_r \cdot \sqrt{c_t \cdot \ln{(z/z_0) \cdot [7 + c_t \cdot \ln{(z/z_0)}]}$; data l'altezza z dell'edificio pari a 8,33 m ed il coefficiente di topografia C_t = 1 si ottiene c_{ev} = 1,42, quindi V_r = 38,38 m/s e q = 920,64 N/m².

 C_d è il *coefficiente dinamico*; data la larghezza massima dell'edificio pari a 19 m, considerando l'edificio in c.a., dalla tabella 3.3.13.a di normativa si ha C_d = 0,95.

C_{pe} è il *coefficiente di pressione esterna* pari a :

- C_{pe} = 0,8 per elementi sopravvento verticali
- C_{pe} = 0,4 per elementi sottovento

considerando la costruzione stagna le pressioni esterne finali sono pari a:

$$w_e = 699 \text{ N/m}^2 = 0,699 \text{ KN /m}^2$$

 $w_i = -349,84 \text{ N/m}^2 = -0,35 \text{ KN/m}^2$

Si può ritenere questo valore trascurabile.

Combinazioni di carico

Si esegue il dimensionamento allo stato limite ultimo. Secondo le indicazioni dell'EC2:

Stati Limite Ultimi					
	EC2 – punto	2.3.3			
	Se a favore di sicurezza	aur	contributo nenta la curezza		
γ_g	1.4	1.0			
γ_q	1.5		О		
	Carichi Variabili abitazioni		0.7		
ψ_{oi}	Uffici, negozi, scuole 0.7				
7 01	Autorimesse		0.7		
	Carichi neve, vent	.0	0.7		

Fig. 4: Coefficienti di sicurezza e combinazione dei carichi

Il carico di calcolo totale si ottiene dalla relazione $F_d = \gamma_g \cdot G_k + \gamma_q \cdot [Q_{ik} + \sum_{i=1}^n \psi_i Q_{ik}]$

Riassunto carichi di progetto calcolati

Ambiente	Permanenti Caratteristici (KN/mq)	Variabili Caratteristici (KN/mq)	Permanenti di calcolo KN/mq	Variabili di calcolo	TOTALE KN/mq
Solaio di civile abitazione	4,8960	2 Folla 1,2	4,896*1,4 6,85	(2+0,7*1,2)*1,5 4,26 (0,7*2+1,2)*1,5	11,114
		Tramezzi		3,9	
. .	4,289	4,000 Folla	4,29*1,4 6,004 0,13*1,4	(4+0,7*1,03)*1,5 7,083	13,087
Balconi	0,131 Parapetto acc. (KN/ml)	1,031 Neve	0,183 Carico in punta	(0,7*4+1,03)*1,5 5,747	5,930
0	4,236	1,000 Sovr. variabile	4,236*1,4	(1+0,7*1,03)*1,5 2,583	8,513
Copertura tetto		1,031 Neve	5,930	(0,7*1+1,03)*1,5 2,597	8,528
Solaio sottotetto	4,096	1 Sovr. variabile	4,096*1,4 5,73	1*1,5 1,5	7,234

Calcolo delle sollecitazioni

Modello di trave continua

Si considera una fascia di solaio larga 1 m sulla quale agiscono i carichi distribuiti lineari precedentemente calcolati. Le luci delle singole campate vengono assunte pari alla distanza tra gli interassi delle travi.

Scelta dei vincoli

Si opta in prima analisi con l'assunzione della "trave ad appoggi fissi" (dovuta al comportamento monodimensionale), ponendo l'attenzione a non considerare eccessivi gradi di iperstaticità. Poichè i solai hanno le nervature disposte nella stessa direzione, si può assumere un vincolo di continuità in corrispondenza dell'appoggio, mentre si considera una cerniera laddove la struttura portante non è in grado di contrastare la libera rotazione della sezione del solaio (come nei nodi di estremità). Tuttavia la trave è dotata di una propria rigidezza torsionale che si oppone in parte alla rotazione del solaio provocando la nascita di un momento torcente. Si aggiunge quindi fuori calcolo un momento negativo negli appoggi di estremità, calcolabile considerando la campata come una trave incastrata e caricata con la metà del carico complessivo:

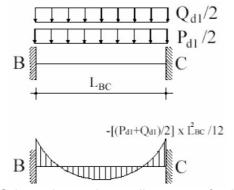


Fig. 5: Schema iperstatico per il momento fuori calcolo

Inoltre va considerato che - soprattutto in mezzeria - l'appoggio non è fisso ma "elastico" (a causa dell'inflessione della trave). Per evitare cedimenti differenziali tra vincoli e quindi una variazione del diagramma dei momenti si progettano le armature longitudinali inferiori per un valore non inferiore a $M\!\geqslant\! (P_d\!+\!Q_d)\frac{L^2}{16}$.

Combinazioni di carico

Per poter dimensionare le armature longitudinali dei travetti e le fasce piene del solaio è necessario calcolare i diagrammi delle sollecitazioni che devono rappresentare le condizioni di carico più gravose. A causa dell'iperstaticità dei modelli di calcolo, esisteranno più combinazioni dei carichi variabili agenti necessarie per massimizzare i momenti negli appoggi e nelle campate.

Denominazione carichi:

Solaio interno	Balcone						
Permanenti							
$Pd_1 = G_k \cdot \gamma_g [\gamma_g = 1,4]$	$Pdb_1 = G_{kb} \cdot \gamma_g \ [\gamma_g = 1,4]$						
	Parapetto						
	$Fd_1 = f_k \cdot \gamma_g \ [\gamma_g = 1,4]$						
Variabili							
$Qd_i = Q_k \cdot \gamma_q \ [\gamma_q = 1,5]$	$Qd_b = Q_{kb} \cdot \gamma_q \ [\gamma_q = 1,5]$						

Combinazioni dei carichi per ogni schema di solaio:

SCHEMA 1:

Caso 1: momento massimo nelle campate 1 e 3

Caso 2: momento massimo nelle campate 2 e 4

Caso 3: momento massimo nell'appoggio 1 (identico al caso 1)

Caso 4: momento massimo nell'appoggio 2

Caso 5: momento massimo nell'appoggio 3

Caso 6: momento massimo nell'appoggio 4

Caso 7: momento massimo nell'appoggio 5 (identico al caso 2)

SOLAIO PIANO TERRA

	Permanenti		Variabili			
Pd1	4,8960x1,4	<u>6,85</u>	Qdi	<u>4,26</u>		

SOLAIO SOTTOTETTO

	Permanenti		Variabili		
Pd1	4,0960x1,4	<u>5,73</u>	Qdi	<u>1,5</u>	

SCHEMA 2:

Caso 1: momento massimo nelle campate 1 e 3

Caso 2: momento massimo nelle campate 2 e 4

Caso 3: momento massimo nell'appoggio 1

Caso 4: momento massimo nell'appoggio 2

Caso 5: momento massimo nell'appoggio 3

Caso 6: momento massimo nell'appoggio 4

Caso 7: momento massimo nell'appoggio 5 (identico al caso 2)

SOLAIO PRIMO PIANO

	Permanenti			Variabili	
Pd1	4,8960x1,4	<u>6,85</u>	Qdi	<u>4,26</u>	
Pdb1	4,289x1,4	<u>6</u>	Qdb	7,08	
Fd1	0,131x1,4	<u>0,18</u>			

SCHEMA 3:

	Permanenti		Variabili		
Pd1	4,236x1,4	<u>5,93</u>	Qdi	<u>2,60</u>	

Caso 1: momento massimo negli appoggi 1 e 4 e nelle campate 1 e 3

Caso 2: momento massimo nella campata 2 Caso 3: momento massimo nell'appoggio 2 Caso 4: momento massimo nell'appoggio 3

SCHEMA 4:

	Permanenti		Variabili		
Pd1	4,236x1,4	<u>5,93</u>	Qdi	<u>2,60</u>	

Caso 1: momento massimo nell'appoggio 1 e in campata 1

Caso 2: momento massimo nell'appoggio 3 e in campata 2

Caso 3: momento massimo nell'appoggio 2

SCHEMA 5:

Trave appoggiata

SOLAIO PIANO TERRA e PRIMO PIANO

	Permanenti			Variabili	
Pd1	4,8960x1,4	<u>6,85</u>	Qdi	<u>4,26</u>	
Pd2	4,8960x0,9	4,41			

SOLAIO SOTTOTETTO

	Permanenti			Variabili	
Pd1	4,0960x1,4	<u>5,73</u>	Qdi	<u>1,5</u>	
Pd2	4,0960x0,9	3,69			

SCHEMA 6:

SOLAIO SOTTOTETTO

	Permanenti			Variabili	
Pd1	4,0960x1,4	<u>5,73</u>	Qdi	<u>1,5</u>	
Pd2	4,0960x0,9	<u>3,69</u>			

Caso 1: momento massimo nell'appoggio 1 e in campata 1 Caso 2: momento massimo nell'appoggio 3 e in campata 2

Caso 3: momento massimo nell'appoggio 2

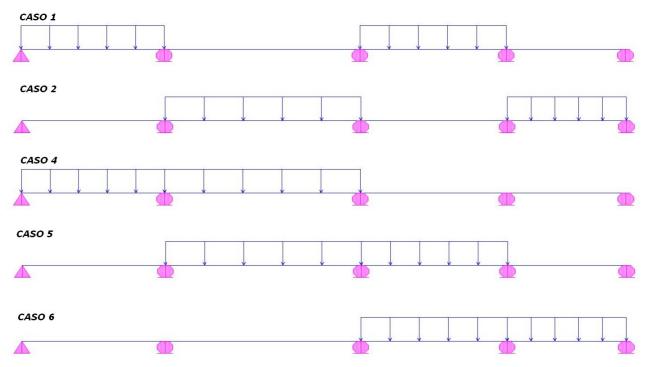


Fig. 6: Casi di carico: solaio SCHEMA 1

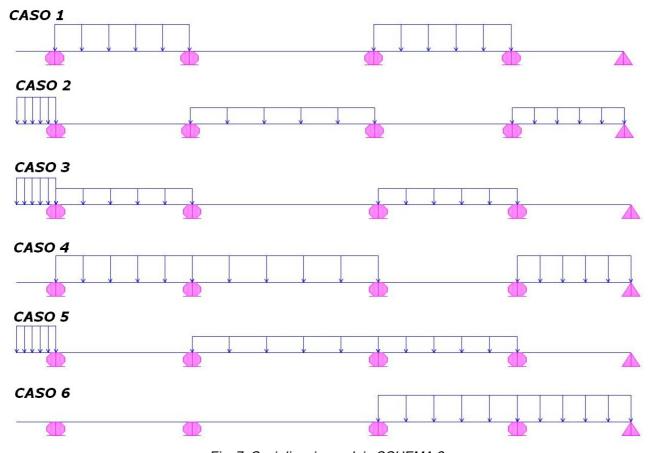


Fig. 7: Casi di carico: solaio SCHEMA 2

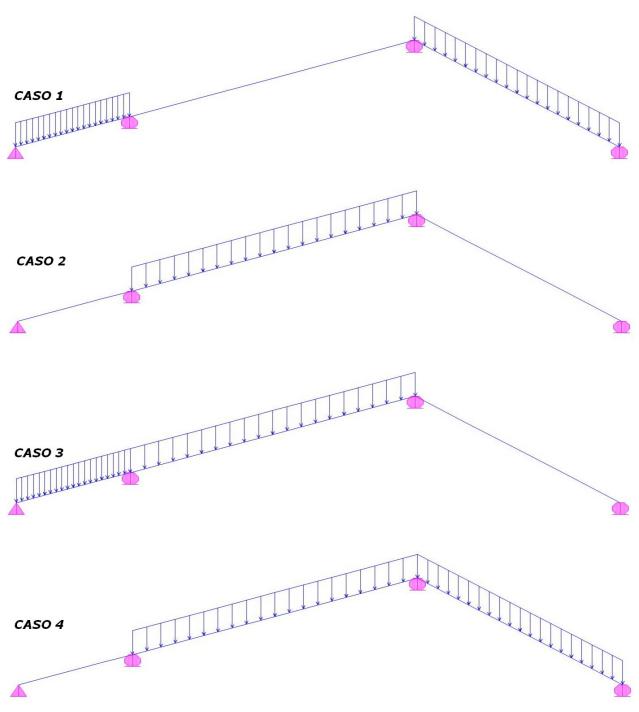


Fig. 8: Casi di carico: solaio SCHEMA 3

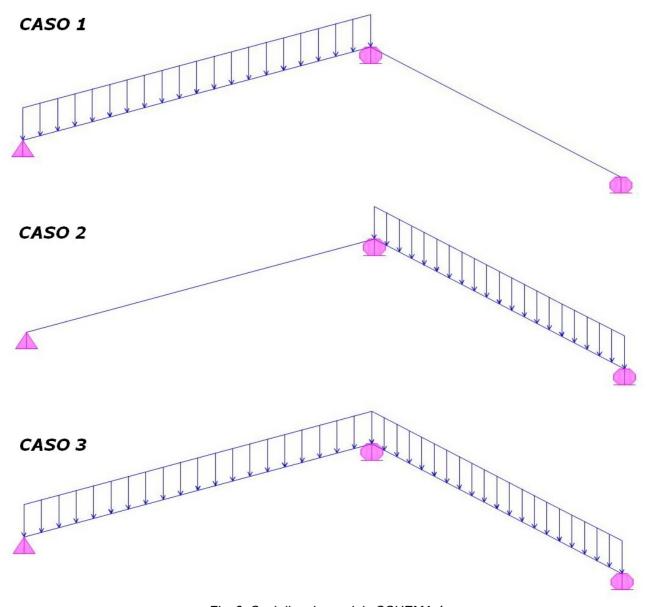


Fig. 9: Casi di carico: solaio SCHEMA 4

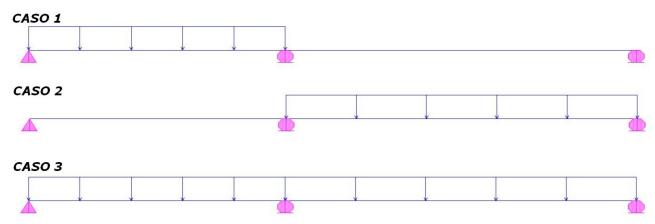


Fig. 10: Casi di carico: solaio SCHEMA 6

Diagrammi di inviluppo

Per ogni solaio, a seconda dello schema di calcolo utilizzato, si sono ricavate le seguenti sollecitazioni tramite inviluppo (si omette la rappresentazione grafica della trave appoggiata):

Solaio A - Piano terra:

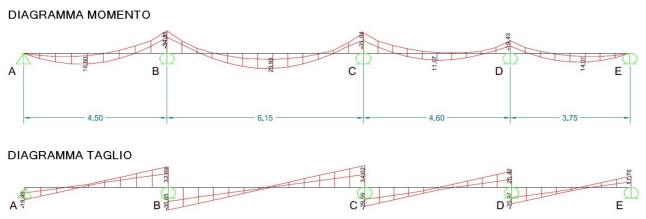


Fig. 11: Diagrammi solaio A - Schema 1

Solaio B - Primo piano:

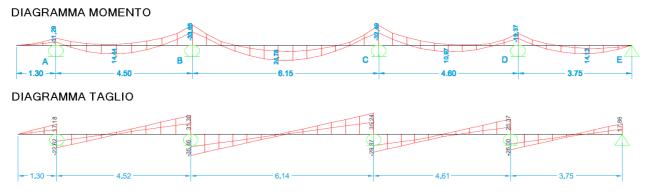


Fig. 12: Diagrammi solaio B - Schema 2

Solaio C - Interpiano:

Fig. 13: Diagrammi solaio C - Schema 1

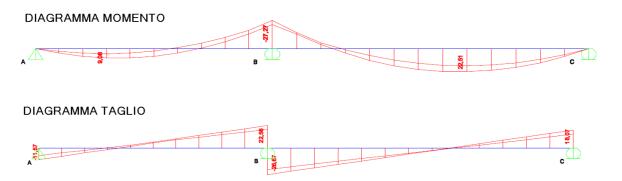
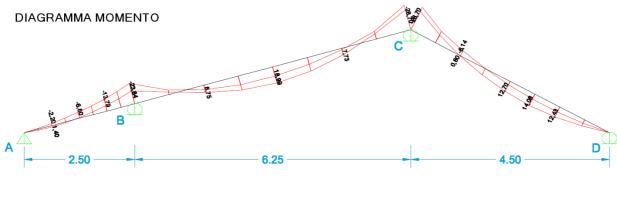



Fig. 14: Diagrammi solaio C - Schema 6

Solaio D - Copertura:

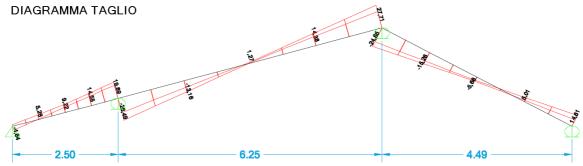
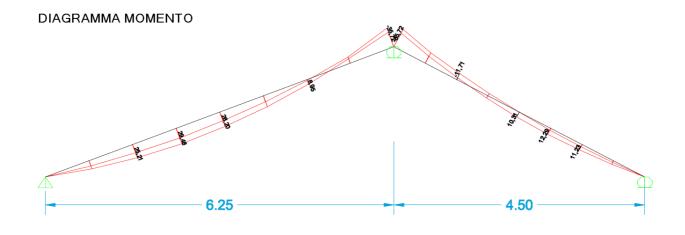



Fig. 15: Diagrammi solaio D - Schema 3

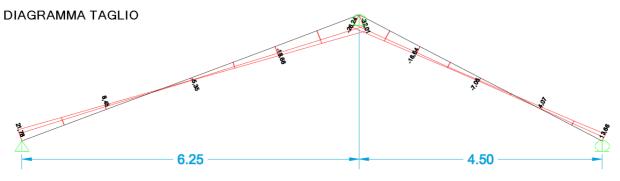


Fig. 16: Diagrammi solaio D - Schema 4

Corso di "Tecnica delle costruzioni" - Prof. F. Paolacci - Anno 2006/2007 - Relazione tecnica progetto - Pag. 20 di 93

Dimensionamento armature

Momenti fuori calcolo

Prima di procedere al dimensionamento delle armature longitudinali è necessario operare una correzione del diagramma dei momenti, aggiungendo negli appoggi di estremità (cerniere) il momento negativo fuori calcolo aggiunto precedentemente descritto. L'entità del momento e la lunghezza di azione sono state determinate analiticamente e graficamente tramite SAP2000:

Schema 1:

Solaio A - Piano terra:

Campata AB:

L = 4,5 m

Pd = 11,114 / 2 = 5,56 KN/m

M_{fc} = 18,92 KNm per una lunghezza di 95 cm dall'appoggio

Campata DE:

L = 3.75 m

Pd = 11,114 / 2 = 5,56 KN/m

M_{fc} = 13,14 KNm per una lunghezza di 82 cm dall'appoggio

Solaio C - Sottotetto:

Campata AB:

L = 4.5 m

Pd = 7,234 / 2 = 3,62 KN/m

M_{fc} = 15,65 KNm per una lunghezza di 95 cm dall'appoggio

Campata DE:

L = 3.75 m

Pd = 7,234 / 2 = 3,62 KN/m

M_{fc} = 10.87 KNm per una lunghezza di 82 cm dall'appoggio

Schema 2:

Solaio B - Primo piano:

Campata EF:

 $L = 3.75 \, \text{m}$

Pd = 11,114 / 2 = 5,56 KN/m

M_{fc} = 18,92 KNm per una lunghezza di 95 cm dall'appoggio

Schema 3:

Solaio D - Copertura:

Campata AB:

L = 2,58 m

Pd = 8,528 / 2 = 4,26 KN/m

M_{fc} = 5,34 KNm per una lunghezza di 56 cm dall'appoggio

Campata CD:

L = 5,08 m

Pd = 8,528 / 2 = 4,26 KN/m

M_{fc} = 9,07 KNm per una lunghezza di 108 cm dall'appoggio

Schema 4:

Solaio D - Copertura:

Campata AB:

L = 6,44 m

Pd = 8,528 / 2 = 4,26 KN/m

M_{fc} = 16,08 KNm per una lunghezza di 140 cm dall'appoggio

Campata BC:

L = 5,08 m

Pd = 8,528 / 2 = 4,26 KN/m

M_{fc} = 9,07 KNm per una lunghezza di 108 cm dall'appoggio

Schema 5:

Solai A e B - Piano terra e primo piano:

Campata AB:

L = 4.6 m

Pd = 11,114 / 2 = 5,56 KN/m

M_{fc} = 10,71 KNm per una lunghezza di 100 cm dall'appoggio

Schema 6:

Solaio C - Sottotetto:

Campata AB:

L = 4.6 m

Pd = 7,234 / 2 = 3,62 KN/m

M_{fc} = 7,29 KNm per una lunghezza di 98 cm dall'appoggio

Campata CD:

L = 6,15 m

Pd = 7,234 / 2 = 3,62 KN/m

M_{fc} = 13,02 KNm per una lunghezza di 132 cm dall'appoggio

Armature longitudinali

Dalle prescrizioni precedentemente indicate si è proceduto con il dimensionamento delle armature dei travetti a seconda del tipo di solaio considerato:

Solaio A – Piano terra

Schema 1: 4 campate senza balcone

Sezione	Md	Md	(PL ²)/16	Md/(0,9 d Fyd)	Td/Fyd	0,07 H	Af min/2	Ф	Aeffettiva	M. resist.
Sezione	[KNm]	[KNcm]	[KNcm]	[cm ²]	[cm ²]	[cm ²]	[cm²]	Ψ	[cm²]	[KN m]
AB	16,8	1680	1406,62	2,17	-	1,68	1,08	1 Φ 12	1,13	17,51
BC	23,98	2398	2627,25	3,39	-	1,68	1,7	1 Φ 12+1 Φ 10	1,92	29,75
CD	11,07	1107	1469,83	1,9	-	1,68	0,95	1 Φ 12	1,13	17,51
DE	14,01	1401	976,82	1,81	-	1,68	0,9	1 Φ 12	1,13	17,51
A sup	18,92	1892	-	2,44	-	-	1,22	1 Φ 12 + 1 Φ 10	1,92	29,75
A inf	-	-	-	-	0,5	1,68	0,84	1 Φ 12	1,13	-
Bsup	34,81	3481	-	4,49	-	-	2,25	2 Φ 12	2,26	35,02
B inf	-	-	-	-	0,91	1,68	0,84	1 Φ 12+1 Φ 10	1,92	-
C sup	31,64	3164	-	4,08	-	-	2,04	2 Φ 12	2,26	35,02
C inf	-	-	-	-	0,75	1,68	0,84	1 Φ 12	1,13	-
D sup	19,43	1943	-	2,51	-	-	1,25	1 φ 10 +1 φ 12	1,94	30,06
D inf	-	-	-	-	0,66	1,68	0,84	1 Φ 12	1,13	-
E sup	13,14	1314	-	1,7	-	-	0,85	1 Φ 12	1,13	17,51
E inf	-	-	-	-	0,45	1,68	0,84	1 Φ 12	1,13	-

Schema 5: Trave appoggiata

Sezione	Md [KNm]	Md [KNcm]	(PL ²)/16 [KNcm]	Md/(0,9 d Fyd) [cm ²]	Td/Fyd [cm²]	0,07 H [cm²]	Af min/2 [cm²]	Ф	Aeffettiva [cm²]	M. resist. [KN m]
AB	30,74	3074	1469,83	3,97	-	1,68	1,98	2 Φ 12	2,26	35,02
A inf	-	-	-	-	0,68	1,68	0,84	1 Φ 12	1,13	-
A sup	10,71	1071	-	1,38	-	-	0,69	1 Φ 12	1,13	17,51
B inf	-	-	-	-	0,68	1,68	0,84	1 Φ 12	1,13	-
B sup	10,71	1071	-	1,38	-	-	0,69	1 Φ 12	1,13	17,51

Valori caratteristici:

 Fyd
 39,13
 KN/cm²

 Ptot
 11,114

Momenti fuori calcolo

Tabella 6: Riepilogo armature longitudinali solaio A

Solaio B – Primo piano

Schema 2: 4 campate con balcone

	Md	Md	(PL ²)/16	Md/(0,9 d Fyd)	Td/Fyd	0,07 H	Af min/2		Aeffettiva	M. resist.
Sezione	one KNm] KNcm]	[KNcm]	[KNcm]	n] [cm²] [cm²]	[cm²]	[cm ²]	[cm²]	Φ	[cm²]	[KN m]
BC	14,44	1444	1406,62	1,86	-	1,68	0,93	1 Φ 12	1,13	17,51
CD	24,78	2478	2627,25	3,39	-	1,68	1,7	1 Φ 12+1 Φ 10	1,92	29, 75
DE	10,97	1097	1469,83	1,9	-	1,68	0,95	1 Φ 12	1,13	17,51
EF	14,13	1413	976,82	1,82	-	1,68	0,91	1 Φ 12	1,13	17,51
Bsup	11,29	1129	-	1,46	-	-	0,73	1 Φ 12	1,13	17,51
B inf	-	-	-	-	0,58	1,68	0,84	1 Φ 12	1,13	-
C sup	33,65	3365	-	4,34	-	-	2,17	2 Φ 12	2,26	35,02
C inf	-	-	-	-	0,91	1,68	0,84	1 Φ 12	1,13	-
D sup	32,49	3249	-	4,19	-	-	2,1	2 Φ 12	2,26	35,02
D inf	-	-	-	-	0,9	1,68	0,84	1 Φ 12	1,13	-
E sup	10,24	1024	-	1,32	-	-	0,66	1 Φ 12+1 Φ 10	1,92	29,75
E inf	-	-	-	-	0,66	1,68	0,84	1 Φ 12	1,13	-
F sup	18,92	1892	-	2,44	-	-	1,22	1 Φ 12+1 Φ 10	1,92	29, 75
F inf	-	-	-	-	0,46	1,68	0,84	1 Φ 12	1,13	-

Schema 5: Trave appoggiata

Ochcina o. Tie	ave appoggiata									
Camiana	Md	Md	(PL ²)/16	Md/(0,9 d Fyd)	Td/Fyd	0,07 H	Af min/2	Φ	Aeffettiva	M. resist.
Sezione	[KNm]	[KNcm]	[KNcm]	[cm ²]	[cm ²]	[cm ²]	[cm²]	Ψ	[cm²]	[KN m]
AB	30,74	3074	1469,83	3,97	-	1,68	1,98	2 Ф 12	2,26	35,02
A inf	-	-	-	-	0,68	1,68	0,84	1 Φ 12	1,13	-
A sup	10,71	1071	-	1,38	-	-	0,69	1 Φ 12	1,13	17,51
B inf	-	-	-	-	0,68	1,68	0,84	1 Φ 12	1,13	-
B sup	10,71	1071	-	1,38	-	-	0,69	1 Φ 12	1,13	17,51

Valori caratteristici:

 Fyd
 39,13
 KN/cm²

 Ptot
 11,114

Momenti fuori calcolo

Tabella 7: Riepilogo armature longitudinali solaio B

Solaio C - Sottotetto

Schema 1: 4 campate senza balcone

Camiana	Md	Md	(PL ²)/16	Md/(0,9 d Fyd)	Td/Fyd	0,07 H	Af min/2	•	Aeffettiva	M. resist.
Sezione	[KNm]	[KNcm]	[KNcm]	[cm²]	[cm²]	[cm²]	[cm²]	Ф	[cm²]	[KN m]
AB	10,03	1003	915,55	1,29	-	1,68	0,84	1 Φ 12	1,13	17,51
BC	14,67	1467	1710,05	2,21	-	1,68	1,1	1 Φ 12	1,13	17,51
CD	5,78	578	956,7	1,23	-	1,68	0,84	1 Φ 12	1,13	17,51
DE	8,53	853	635,8	1,1	-	1,68	0,84	1 Φ 12	1,13	17,51
A sup	15,65	1565	-	2,02	-	-	1,01	1 Φ 12	1,13	17,51
A inf	-	-	-	-	0,31	1,68	0,84	1 Φ 12	1,13	_
B sup	22,34	2234	-	2,88	-	-	1,44	1 Φ 12+1 Φ 10	1,92	29, 75
B inf	-	-	-	-	0,59	1,68	0,84	1 Φ 12	1,13	-
C sup	19,94	1994	-	2,57	-	-	1,29	1 Φ 12+1 Φ 10	1,92	29, 75
C inf	-	-	-	-	0,57	1,68	0,84	1 Φ 12	1,13	_
D sup	11,89	1189	-	1,53	-	-	0,77	1 Φ 12	1,13	17,51
D inf	-	-	-	-	0,43	1,68	0,84	1 Φ 12	1,13	-
E sup	10,87	1087	-	1,4	-	-	0,7	1 Φ 12	1,13	17,51
E inf	-	-	-	-	0,28	1,68	0,84	1 Φ 12	1,13	_

Schema 6: 2 campate

Cariana	Md	Md	(PL ²)/16	Md/(0,9 d Fyd)	Td/Fyd	0,07 H	Af min/2	Ф	Aeffettiva	M. resist.
Sezione	[KNm]	[KNcm]	[KNcm]	[cm ²]	[cm²]	[cm²]	[cm²]	Ψ	[cm²]	[KN m]
AB	9,08	908	956,7	1,17	-	1,68	0,84	1 Φ 12	1,13	17,51
BC	22,51	2251	1710,05	2,91	-	1,68	1,45	1 Φ 12+1 Φ 10	1,92	29, 75
A sup	7,29	729	-	0,94	-	-	0,47	1 Φ 12	1,13	17,51
A inf	-	-	-	-	0,30	1,68	0,84	1 Φ 12	1,13	-
B sup	27,27	2727	-	3,52	-	-	1,76	1 Φ 12+1 Φ 10	1,92	29,75
B inf	-	-	-	-	0,68	1,68	0,84	1 Φ 12	1,13	-
C sup	13,02	1302	-	1,68	-	-	0,84	1 Φ 12	1,13	17,51
C inf	-	-	-	-	0,46	1,68	0,84	1 Φ 12	1,13	-

Valori caratteristici:

Fyd	39,13	KN/cm ²
Ptot	7,234	

Momenti fuori calcolo

Tabella 8: Riepilogo armature longitudinali solaio C

Solaio D – Copertura

Schema 3: 3 campate

Cariana	Md	Md	(PL ²)/16	Md/(0,9 d Fyd)	Td/Fyd	0,07 H	Af min/2	•	Aeffettiva	M. resist.
Sezione	[KNm]	[KNcm]	[KNcm]	[cm²]	[cm ²]	[cm²]	[cm²]	Φ	[cm²]	[KN m]
AB	1,4	140	322,13	0,42	-	1,68	0,84	1 Φ 12	1,13	17,51
BC	12,3	1230	2013,32	2,6	-	1,68	1,3	1 Φ 12+1 Φ 10	1,92	29,75
CD	14,08	1408	960,6	1,82	-	1,68	0,91	1 Φ 12	1,13	17,51
A sup	5,34	534	-	0,69	-	-	0,34	1 Φ 12	1,13	17,51
A inf	-	-	-	-	0,12	1,68	0,84	1 Φ 12	1,13	-
B sup	23,84	2384	-	3,08	-	-	1,54	1 Φ 12+1 Φ 10	1,92	29,75
B inf	-	-	-	-	0,68	1,68	0,84	1 Φ 12	1,13	_
C sup	28,7	2870	-	3,7	-	-	1,85	1 Φ 12+1 Φ 10	1,92	29,75
C inf	-	-	-	-	0,71	1,68	0,84	1 Φ 12	1,13	_
D sup	9,07	907	-	1,17	-	-	0,59	1 Φ 12	1,13	17,51
D inf	-	-	-	-	0,37	1,68	0,84	1 Φ 12	1,13	-

Schema 4: 2 campate

Sezione	Md	Md	(PL ²)/16	Md/(0,9 d Fyd)	Td/Fyd	0,07 H	Af min/2	Φ	Aeffettiva	M. resist.
Sezione	[KNm]	[KNcm]	[KNcm]	[cm ²]	[cm²]	[cm²]	[cm²]	Ψ	[cm²]	[KN m]
AB	29,48	2948	2160,89	3,8	-	1,68	1,9	1 φ 12+1 φ 10	1,92	29,75
BC	12,3	1230	1324,86	1,71	-	1,68	0,85	1 φ 12+1 φ 10	1,92	29,75
A sup	16,08	1608	-	2,08	-	-	1,04	1 Φ 12	1,13	17,51
A inf	-	-	-	-	0,56	1,68	0,84	1 Φ 12	1,13	-
B sup	35,72	3572	-	4,61	-	-	2,31	2 Φ 12 + 1 Φ 10	3,05	47,26
B inf	-	-	-	-	0,82	1,68	0,84	1 Φ 12	1,13	-
C sup	9,07	907	-	1,17	-	-	0,59	1 Φ 12	1,13	17,51
C inf	_	_	-	-	0.35	1.68	0.84	1 Φ 12	1.13	-

Valori caratteristici:

Fyd	39,13	KN/cm ²
Ptot	8,528	

Momenti fuori calcolo

Tabella 9: Riepilogo armature longitudinali solaio D

Momenti resistenti

Solaio A (Piano terra)

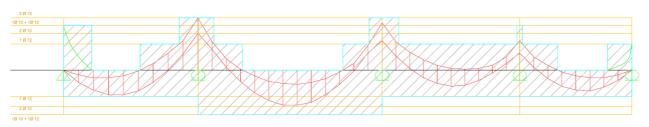


Fig. 17: Momenti resistenti armature - Schema 1 - Solaio A, piano terra

Solaio B (Primo piano)

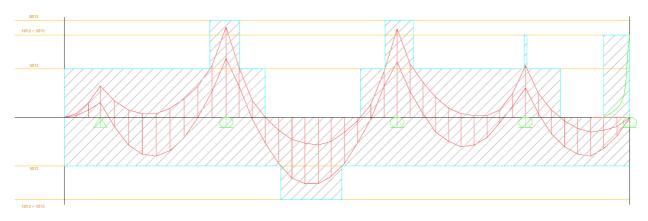


Fig. 18: Momenti resistenti armature - Schema 2 - Solaio B, primo piano

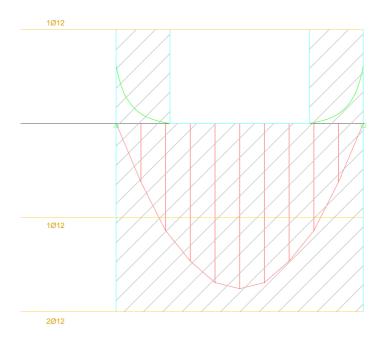


Fig. 19: Momenti resistenti armature - Schema 5 - Solaio B,primo piano

Solaio C (Sottotetto)

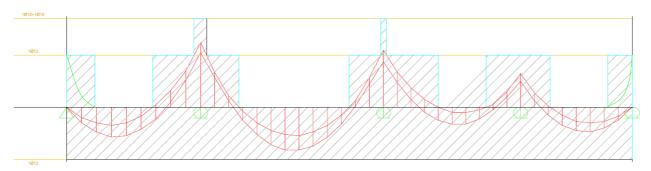


Fig. 20: Momenti resistenti armature - Schema 1 - Solaio C, sottotetto

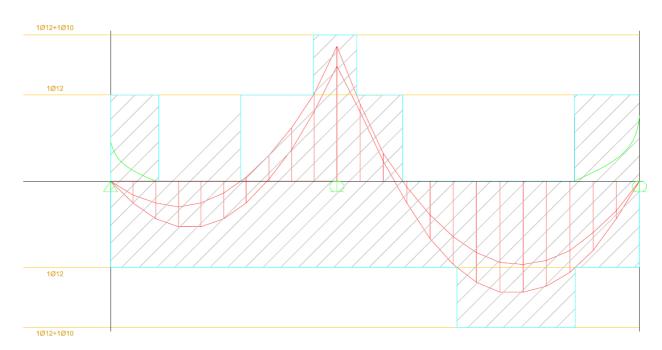


Fig. 21: Momenti resistenti armature - Schema 6 - Solaio C, sottotetto

Solaio D (Copertura)

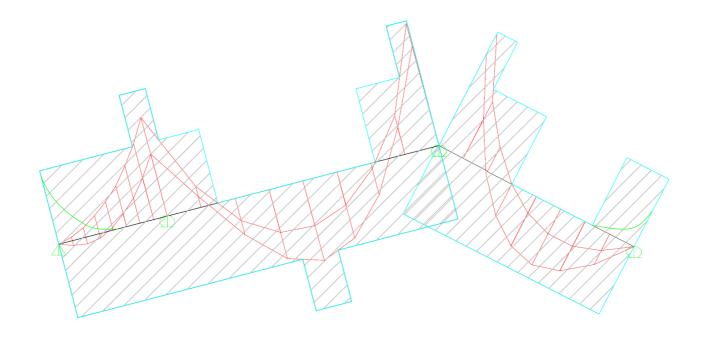


Fig. 22: Momenti resistenti armature - Schema 3 - Solaio D, copertura

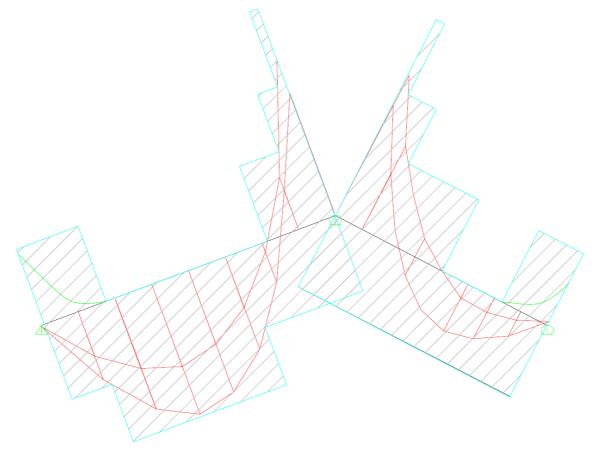


Fig. 23: Momenti resistenti armature - Schema 4 - Solaio D, copertura

Negli schemi di solai nei quali non è presente la rappresentazione grafica del momento resistente il momento agente è notevolmente inferiore a quello resistente e quindi fuori scala.

Taglio resistente

Poiché il solaio è capace di portare i carichi trasversalmente, non è necessaria l'armatura a taglio, sollecitazioni che vengono assorbite dal calcestruzzo.

Il progetto e la verifica vanno effettuati in corrispondenza degli appoggi dove gli sforzi sono massimi.

Va calcolato il taglio resistente del singolo travetto secondo la relazione:

$$V_{Rd} = \tau_{Rd} k (1.2 + 40 \rho_l) db$$
 con:

 au_{rd} = 0,25 f_{ctd} tensione di aderenza e f_{ctd} resistenza a trazione del cls di calcolo precedentemente calcolata e pari a 1,14 MPa

$$\rho_k = \frac{A_{sl}}{db}$$
 percentuale geometrica di armatura $k = 1, 6 - d$

In seguito va confrontato questo taglio con quello agente; ove quest'ultimo sia superiore sarà necessaria una fascia piena in c.a. evitando quindi l'utilizzo degli elementi di alleggerimento.

Calcolo tagli resistenti:

Solaio A – Piano terra

* riferita ad un metro di solaio

Schema 1: 4 campate senza balcone

Appoggio	As	Asw *	ρ	d	f _{ctd}	b_{w}	K	Vrd
	[cm ₂]	[mm ₂]		[mm]	[MPa]	[mm]		[KN]
Α	1,13	226	0,00428	220	1,14	240	1,38	28,47
В	1,92	384	0,00727	220	1,14	240	1,38	30,96
С	1,13	226	0,00428	220	1,14	240	1,38	28,47
D	1,13	226	0,00428	220	1,14	240	1,38	28,47
E	1,13	226	0,00428	220	1,14	240	1,38	28,47

Schema 5: Trave appoggiata

Ī	Appoggio	As	Asw *	ρ	d	f _{ctd}	b _w	K	Vrd
		[cm ₂]	[mm ₂]		[mm]	[MPa]	[mm]		[KN]
ſ	Α	1,13	226	0,00428	220	1,14	240	1,38	28,47
١	В	1,13	226	0,00428	220	1,14	240	1,38	28,47

Tabella 10: Tagli resistenti dei travetti - Solaio A

Solaio B – Primo piano

* riferita ad un metro di solaio

Schema 2: 4 campate con balcone

Appoggio	As	Asw *	ρ	d	f _{ctd}	b _w	K	Vrd
	[cm ₂]	[mm ₂]		[mm]	[MPa]	[mm]		[KN]
В	1,13	226	0,00428	220	1,14	240	1,38	28,47
С	1,13	226	0,00428	220	1,14	240	1,38	28,47
D	1,13	226	0,00428	220	1,14	240	1,38	28,47
E	1,13	226	0,00428	220	1,14	240	1,38	28,47
F	1,13	226	0,00428	220	1,14	240	1,38	28,47
Balcone	1,13	226	0,00523	180	1,14	240	1,42	24,64

Schema 5: Trave appoggiata

Appoggio	As [cm ₂]	Asw * [mm ₂]	ρ	d [mm]	f _{ctd} [MPa]	b _w [mm]	К	Vrd [KN]
Α	1,13	226	0,00428	220	1,14	240	1,38	28,47
В	1,13	226	0,00428	220	1,14	240	1,38	28,47

Tabella 11: Tagli resistenti dei travetti - Solaio B

Solaio C - Sottotetto

* riferita ad un metro di solaio

Schema 1: 4 campate senza balcone

Appoggio	As	Asw *	ρ	d	f _{ctd}	b _w	K	Vrd
	[cm ₂]	[mm ₂]		[mm]	[MPa]	[mm]		[KN]
Α	1,13	226	0,00428	220	1,14	240	1,38	28,47
В	1,92	384	0,00727	220	1,14	240	1,38	30,96
С	1,13	226	0,00428	220	1,14	240	1,38	28,47
D	1,13	226	0,00428	220	1,14	240	1,38	28,47
E	1,13	226	0,00428	220	1,14	240	1,38	28,47

Schema 6: 2 campate

Appoggio	As	Asw *	ρ	d	f _{ctd}	b _w	K	Vrd
	[cm ₂]	[mm ₂]		[mm]	[MPa]	[mm]		[KN]
Α	1,13	226	0,00428	220	1,14	240	1,38	28,47
В	1,13	226	0,00428	220	1,14	240	1,38	28,47
С	1,13	226	0,00428	220	1,14	240	1,38	28,47

Tabella 12: Tagli resistenti dei travetti - Solaio C

Solaio D – Copertura

* riferita ad un metro di solaio

Schema 3: 3 campate

Appoggio	As	Asw *	ρ	d	f	b _w	K	Vrd
	[cm ₂]	[mm ₂]		[mm]	[MPa]	[mm]		[KN]
Α	1,13	226	0,00428	220	1,14	240	1,38	28,47
В	1,92	384	0,00727	220	1,14	240	1,38	30,96
С	1,13	226	0,00428	220	1,14	240	1,38	28,47
D	1,13	226	0,00428	220	1,14	240	1,38	28,47

Schema 4: 2 campate

Appoggio	As	Asw *	ρ	d	f	b_{w}	K	Vrd
	[cm ₂]	[mm ₂]		[mm]	[MPa]	[mm]		[KN]
Α	1,13	226	0,00428	220	1,14	240	1,38	28,47
В	1,13	226	0,00428	220	1,14	240	1,38	28,47
С	1,13	226	0,00428	220	1,14	240	1,38	28,47

Tabella 13: Tagli resistenti dei travetti - Solaio D

Fasce piene

Solaio A (Piano terra)

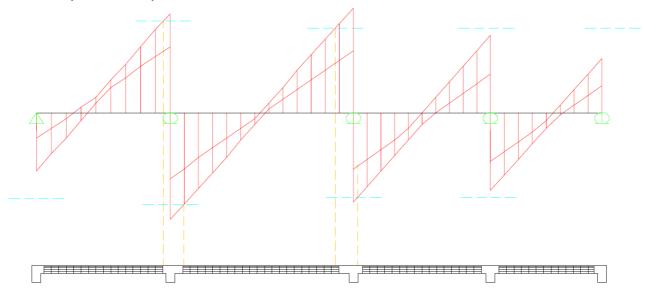


Fig. 24: Diagramma fasce piene - Solaio A (piano terra) - Schema 1

Solaio B (Primo piano)

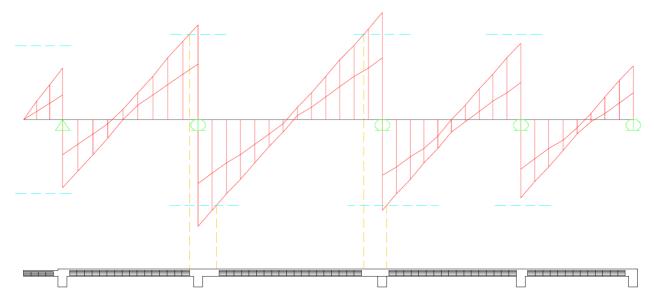


Fig. 25: Diagramma fasce piene - Solaio B (primo piano) - Schema 2

Solaio C (Sottotetto)

Fig. 26: Diagramma fasce piene - Solaio C (sottotetto) - Schema 1

Negli schemi di solai nei quali non è presente la rappresentazione grafica del taglio resistente il taglio agente è notevolmente inferiore a quello resistente e quindi fuori scala.

Ulteriori indicazioni

Per le luci superiori a 4,5 metri è stato necessaro inserire un travetto rompitratta, o di ripartizione, perpendicolare alla tessitura dei travetti, con base 15 cm (armato con 2 ϕ 16 sopra e 2 ϕ 16 sotto) per aumentare la rigidezza della struttura nel suo assieme, staffati con ferri ϕ 16 passo 15 cm.

Il DM 14-09-2005 impone al punto 5.1.9.1.1.4 che la soletta di ogni solaio sia munita di armatura di ripartizione (rete elettrosaldata) per un minimo di **3 φ 6** al metro o del 20% di quella longitudinale. A tal proposito si è prevista in ogni soletta una rete elettrosaldata **φ6** con passo di **20 cm** facendo attenzione a non poggiarla direttamente sui laterizi.

Il copriferro inferiore dei solai deve essere di 3 cm.

I solai di copertura terminano con uno sbalzo di 30 cm armato con il prolungamento dei ferri della sezione di calcolo.

Verifica delle sezioni

Per ogni schema di solaio si sono effettuate le verifiche tramite il software EC2 delle sezioni maggiormente sollecitate. Poichè i diagrammi di calcolo forniscono valori considerando 1 mt di larghezza, per considerare il singolo travetto sono stati dimezzati i momenti (circa due travetti per ogni metro di solaio). Si è posta l'attenzione anche all'altezza dell'asse neutro (calcolata rispetto al limite superiore della sezione) nel caso delle verifiche di sezioni soggette a momento flettente positivo (quelle in campata) affinchè tagli sempre la soletta (ipotesi fatta in fase di dimensionamento).

Si sono verificati i solai A e B (piano terra e primo piano):

Solaio A - Schema 1

Sezione	h (cm)	Md (KNm)	MRd (KNm)	M/MRd	Deformazioni			Verificata
Sezione	II (CIII)	Mu (Mill)	WKU (KWIII)	W/W/KU	eps c sup	eps s inf	asse neutro	Vernicala
AB	24	8,4	9,1	0,93	0,0008	-0,0100	1,6 cm	SI
BC	24	12	15,2	0,79	0,0011	-0,0100	2,2 cm	SI
CD	24	5,5	9,1	0,61	0,0008	-0,0100	1,6 cm	SI
DE	24	7	9,1	0,77	0,0008	-0,0100	1,6 cm	SI
A sup	24	-9,5	-14,5	0,65	-0,0100	0,0024	4,2 cm	SI
B sup	24	-17,4	-27	0,65	-0,0058	0,0035	8,3 cm	SI
C sup	24	-15,8	-17	0,93	-0,0100	0,0027	4,7 cm	SI
D sup	24	-9,7	-14,5	0,67	-0,0100	0,0024	4,2 cm	SI
E sup	24	-6,6	-8,7	0,75	-0,0100	0,0017	3,2 cm	SI

Tabella 14: Riassunto verifiche solaio A - Schema 1 con EC2

Solaio B - Schema 2

Sezione	h (om)	Md (KNm)	MRd (KNm)	M/MRd		Deformazioni		Verificata
Sezione	h (cm)	INIC (FANIII)	WKU (KIVIII)	W/W/KU	eps c sup	eps s inf	asse neutro	vernicala
BC	24	7,2	9,1	0,79	0,0008	-0,0100	1,7 cm	SI
CD	24	12,4	15,2	0,82	0,0011	-0,0100	2,3 cm	SI
DE	24	5,5	9,1	0,6	0,0008	-0,0100	1,7 cm	SI
EF	24	7	9,1	0,77	0,0008	-0,0100	1,7 cm	SI
B sup	24	-5,7	-8,7	0,65	-0,0100	0,0017	3,3 cm	SI
C sup	24	-16,8	-17	0,99	-0,0100	0,0028	4,8 cm	SI
D sup	24	-16,3	-17	0,96	-0,0100	0,0028	4,8 cm	SI
E sup	24	-5,1	-8,7	0,59	-0,0100	0,0017	3,3 cm	SI
F sup	24	-9,5	-14,5	0,66	-0,0100	0,0025	4,4 cm	SI

Tabella 15: Riassunto verifiche solaio B - Schema 2 con EC2

Solaio A e B - Schema 5

Sezione	h (am)	Md (KNm)	MRd (KNm)	M/MRd	Deformazioni		Verificata	
Sezione	h (cm)	IVI (INIVIII)	WKU (KNIII)	IVI/IVI KU	eps c sup	eps s inf	asse neutro	veriiicata
AB	24	15,4	17,9	0,9	0,0012	-0,0100	2,4 cm	SI
A sup	24	-5,4	-8,7	0,61	-0,0100	0,0017	3,2 cm	SI
B sup	24	-5,4	-8,7	0,61	-0,0100	0,0017	3,2 cm	SI

Tabella 16: Riassunto verifiche solaio A e B - Schema 5 con EC2

Predimensionamenti e analisi dei carichi

Per poter effettuare l'analisi delle sollecitazioni negli elementi strutturali è necessario predimensionarli e quindi analizzare i carichi su essi gravanti.

Tamponature

Per le tamponature si è scelta la seguente tipologia costruttiva:

Componenti	S [m]	γ [KN/m³]	Pesi [KN/m²]
Muratura mattoni forati	0,250	11,00	2,750
Intonaco interno a gesso	0,015	12,00	0,180
Rinzaffo lisciato	0,010	19,00	0,190
Collante per rivestimento	0,004	-	0,005
Rivestimento esterno	0,015	17,00	0,255
Arrotondamento	-	-	0,020
		Totale	3,400

Tabella 17: Materiali e pesi relativi delle tamponature esterne

Esse esercitano sugli elementi strutturali inflessi (travi) un carico uniforme per unità di lunghezza pari al peso per l'altezza per un coefficiente riduttivo che considera la presenza delle aperture:

$$\psi = \Delta \frac{S}{S_t} = \frac{S_T - S_{aperture}}{S_T}$$

con S_T = superficie di una faccia della tamponatura; si ha:

 ψ = 0.80 in presenza di sole finestre

 ψ = 0.70 in presenza di porte e finestre

Ogni piano è alto 2,7 m, quindi si hanno i seguenti carichi distribuiti a metro lineare per le diverse tipologie di tamponature:

In assenza di aperture	3,400x2,70	9,18
Presenza di sole finestre	3,400x2,70x0,80	7,34
Presenza di porte e finestre	3,400x2,70x0,70	6,43

Tabella 18: Carichi in KN/m delle diverse tamponature presenti

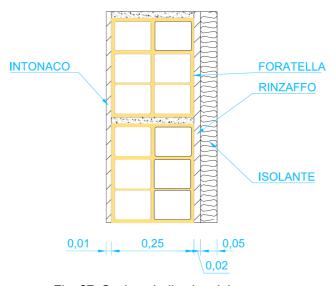


Fig. 27: Sezione indicativa del tramezzo

Travi

Predimensionamento

Il predimensionamento della trave dipende dalla luce e dalla funzione che essa deve svolgere (quindi i carichi da portare e le esigenze architettoniche). Si hanno le *travi portanti* (che portano se stesse, il solaio ed eventualmente tamponature o parapetti), le *travi perimetrali* (che portano se stesse, le tamponature o i parapetti) e quelle di *collegamento* (che portano solo loro stesse più una certa porzione di solaio, ma conferiscono una maggiore rigidezza all'impalcato).

Per le travi portanti e perimetrali si è scelta la tipologia delle *travi emergenti*, la cui larghezza è stata assunta convenzionalmente pari a **30 cm**. Per predimensionare l'altezza ci si è riferiti al criterio grossolano di $H = L / (10^{\circ} 12)$ con L = luce della trave.

Per le travi di collegamento si è adottata la tipologia delle *travi a spessore* con altezza pari a quella del solaio vicino e con larghezza grossolanamente pari a B = L / 6.

Analisi dei carichi

Il peso che agisce sulle travi è in forma di carico linearmente distribuito, costituito dai contributi precedentemente descritti oltre al peso proprio della trave (dato ovviamente dall'area della sezione per il peso specifico del cemento armato pari a γ_{cls} = 25 KN/m³). Il peso che il solaio scarica sulle travi si valuta utilizzando il metodo delle *zone d'influenza*, ovvero si computa l'area di solaio che grava sulla trave considerando metà distanza tra le travi adiacenti. Per la fascia piena si è considerato convenzionalmente una larghezza media di 10 cm.

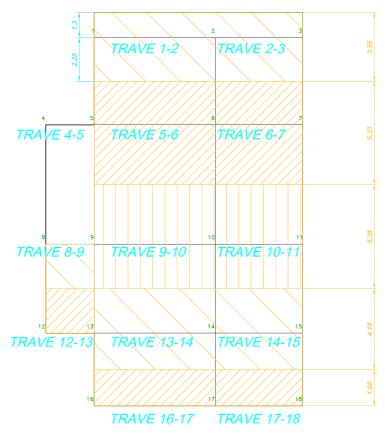


Fig. 28: Schema riassuntivo zone di influenza travi - piani A e B

Piani A e B (piano terra e primo piano):

Trave	(1-5),(3-7)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		3,75
Solaio interno	0,50	4,90	2,45
Tamponatura			7,34
Pk			13,54
Pd	γ = 1,4		18,96
Qd	γ = 1,5		2,13

Trave	(4-8)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		3,75
Tamponatura			9,18
Pk			12,93
Pd	γ = 1,4		18,10
Qd	γ = 1,5		0,00

Trave	(8-12),(11-15)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		3,75
Solaio interno	0,50	4,90	2,45
Tamponatura			7,34
Pk			13,54
Pd	y = 1,4		18,96
Qd	γ = 1,5		2,13

Trave	(13-16),(15-18)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	3,75		3,75
Solaio interno	0,50	4,90	2,45
Tamponatura			7,34
Pk			13,54
Pd	γ = 1,4		18,96
Qd	γ = 1,5		2,13

Trave	(4-5)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	2,5		3,75
Tamponatura			9,18
Pk			12,93
Pd	γ = 1,4		18, 10
Qd	γ = 1,5		0,00

Trave	(7-11)	Solai A e B	
Predimensionamento		•	
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		3,75
Solaio interno	0,50	4,90	2,45
Tamponatura			7,34
Pk			13,54
Pd	y = 1,4		18,96
Qd	v = 1.5		2,13

Tabella 19: Piani A e B - Travi perimetrali non sollecitate direttamente (metri e KN/m)

Trave	(1-2)	Solaio B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		4,5
Solaio interno	2,55	4,9	12,48
Fascia piena interna	0,1		0,6
Solaio balcone	1,3	4,29	5,58
Fascia piena esterna	0,1		0,5
Tamponatura			6,43
Parapetto			0,13
Pk			30,22
Pd	y = 1,4		42,3
Variabile interno			7,24
Variabile balcone			6,14
Qk			13,38
Qd	v = 1.5		20.07

Trave	(1-2)	Solaio A	
Predimensionamento		•	
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		4,5
Solaio interno	2,55	4,9	12,48
Fascia piena interna	0,1		0,6
Tamponatura			7,34
Pk			24,93
Pd	γ = 1,4		34,9
Qd	y = 1.5		10,86

Trave	(2-3)	Solaio B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	2,55	4,9	12,48
Fascia piena interna	0,1		0,6
Solaio balcone	1,3	4,29	5,58
Fascia piena esterna	0,1		0,5
Tamponatura			6,43
Parapetto			0,13
Pk			30,22
Pd	γ = 1,4		42,3
Variabile interno			7,24
Variabile balcone			6,14
Qk			13,38
Qd	γ = 1,5		20,07

Trave	(2-3)	Solaio A	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	2,55	4,9	12,48
Fascia piena interna	0,1		0,6
Tamponatura			7,34
Pk			24,93
Pd	y = 1,4		34,9
Qd	y = 1,5		10,86

Trave	(16-17)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,25		4,5
Solaio interno	1,88	4,9	9,2
Fascia piena interna	0,1		0,6
Tamponatura			7,34
Pk			21,65
Pd	γ = 1,4		30,31
Qd	γ = 1,5		8,01

Trave	(17-18)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	1,88	4,9	9,2
Fascia piena interna	0,1		0,6
Tamponatura			7,34
Pk			21,65
Pd	γ = 1,4		30,31
Qd	γ = 1,5		8,01

Trave	(12-13)	Solaio A	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,3	0,3	0,09	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	2,5		2,25
Solaio interno	2,3	4,9	11,26
Fascia piena interna	0,1		0,6
Tamponatura			6,43
Pk			20,54
Pd	γ = 1,4		28,75
Od	v = 1.5		9.8

Trave	(12-13)	Solaio B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,3	0,3	0,09	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	2,5		2,25
Solaio interno	2,3	4,9	11,26
Fascia piena interna	0,1		0,6
Tamponatura			7,34
Pk			21,45
Pd	γ = 1,4		30,04
Qd	γ = 1,5		9,8

Tabella 20: Piani A e B - Travi perimetrali sollecitate direttamente (metri e KN/m)

Trave	(8-9)	Solaio A	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,3	0,3	0,09	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	2,5		2,25
Solaio interno	2,3	4,9	11,26
Fascia piena interna	0,1		0,6
Pk			14, 11
Pd	γ = 1,4		19,76
Qd	γ = 1,5		9,8

Trave	(8-9)	Solaio B	
Predimensionamento		•	
Altezza	Larghezza	Area	Peso [Kn/mc]
0,3	0,3	0,09	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	2,5		2,25
Solaio interno	2,3	4,9	11,26
Fascia piena interna	0,1		0,6
Tamponatura			0
Pk			14,11
Pd	y = 1,4		19,76
Qd	γ = 1,5		9,8

Trave	(13-14)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,25		4,5
Solaio interno	4,18	4,9	20,47
Fascia piena interna	0,1		0,6
Pk			25, 57
Pd	γ = 1,4		35,79
Qd	γ = 1,5		17,81

Trave	(14-15)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	4,18	4,9	20,47
Fascia piena interna	0,1		0,6
Pk			25, 57
Pd	γ = 1,4		35,79
Qd	γ = 1,5		17,81

Trave	(9-10)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,25		4,5
Solaio interno	5,38	4,9	26,34
Fascia piena interna	0,1		0,6
Pk			31,44
Pd	γ = 1,4		44,02
Qd	γ = 1,5		22,92

Trave	(10-11)	Solai A e B	
Predimensionamento		•	
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	5,38	4,9	26,34
Fascia piena interna	0,1		0,6
Pk			31,44
Pd	γ = 1,4		44,02
Od	v = 1.5		22.92

Trave	(5-6)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,25		4,5
Solaio interno	5,33	4,9	26,1
Fascia piena interna	0,1		0,6
Pk			31,2
Pd	γ = 1,4		43,67
Qd	γ = 1,5		22,71

Trave	(6-7)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	5,33	4,9	26,1
Fascia piena interna	0,1		0,6
Pk			31,2
Pd	γ = 1,4		43,67
Qd	γ = 1,5		22,71

Tabella 21: Piani A e B - Travi alte interne sollecitate direttamente (metri e KN/m)

Trave	(2-6)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		3,6
Solaio interno	1	4,9	4,9
Pk			8,5
Pd	γ = 1,4		11,89
Qd	γ = 1,5		4,26

Trave	(6-10)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		3,6
Solaio interno	1	4,9	4,9
Pk			8,5
Pd	γ = 1,4		11,89
Qd	γ = 1,5		4,26

Trave	(10-14)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		3,6
Solaio interno	1	4,9	4,9
Pk			8,5
Pd	γ = 1,4		11,89
Qd	γ = 1,5		4,26

Trave	(14-17)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	3,75		3,6
Solaio interno	1	4,9	4,9
Pk			8,5
Pd	γ = 1,4		11,89
Qd	γ = 1,5		4,26

Trave	(5-9)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		3,6
Solaio interno	0,5	4,9	2,45
Pk			6,05
Pd	γ = 1,4		8,47
Qd	γ = 1,5		2,13

Trave	(9-13)	Solai A e B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		3,6
Solaio interno	1	4,9	4,9
Pk			8,5
Pd	γ = 1,4		11,89
Qd	γ = 1,5		4,26

Tabella 22: Solai A e B - Travi interne a spessore (metri e KN/m)

Trave	(1bis)	Solaio B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		4,5
Solaio esterno	0,5	4,29	2,14
Pk			6,64
Pd	γ = 1,4		9,3
Qd	y = 1.5		3,54

Trave	(2bis)	Solaio B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,2	0,6	0,12	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		3
Solaio esterno	1	4,29	4,29
Pk			7,29
Pd	γ = 1,4		10,2
Qd	y = 1,5		7,08

Trave	(3bis)	Solaio B	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		4,5
Solaio esterno	0,5	4,29	2,14
Pk			6,64
Pd	γ = 1,4		9,3
Qd	y = 1,5		3,54

Tabella 23: Piani A e B - Travi esterne a spessore (metri e KN/m)

Piano C (sottotetto):

In alcune travi si è considerato anche parte del solaio di copertura che grava direttamente.

Trave	(1-5)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		3,75
Solaio interno	0,50	4,10	2,05
Tamponatura			0,00
Pk			5,80
Pd	γ = 1,4		8,12
Qd			0,50

Trave	(3-7)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		3,75
Solaio interno	0,50	4,10	2,05
Solaio tetto	2,54	4,24	10,77
Pk			16,57
Pd	γ = 1,4		23,19
Qd			3,13

Trave	(4-8)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		3,75
Solaio interno	0,50	4,10	2,05
Solaio tetto	1,29	4,24	5,47
Pk			11,27
Pd	γ = 1,4		15,77
Qd			1,83

Trave	(13-16)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	3,75		3,75
Solaio interno	0,50	4,10	2,05
Tamponatura			0,00
Pk			5,80
Pd	γ = 1,4		8,12
Qd	·		0,50

Trave	(8-12)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		3,75
Solaio interno	0,50	4,10	2,05
Solaio tetto	1,29	4,24	5,47
Pk			11,27
Pd	γ = 1,4		15,77
Qd			1,84

Trave	(11-15)	Solaio C	
Predimensionamento		•	
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		3,75
Solaio interno	0,50	4,10	2,05
Solaio tetto	2,54	4,24	10,77
Pk			16,57
Pd	γ = 1,4		23,19
Qd			3,13

Trave	(4-5)	Solaio C	
Predimensionamento		•	
Altezza	Larghezza	Area	Peso [Kn/mc]
0,3	0,3	0,09	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	2,5		2,25
Solaio interno	3,08	4,10	12,6
Fascia piena interna	0,1		0,6
Tamponatura			0
Pk			15,45
Pd	y = 1,4		21,62
Qd	v = 1,5		3,08

Trave	(7-11)	Solaio C	
Predimensionamento		•	
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		3,75
Solaio interno	0,50	4,10	2,05
Solaio tetto	2,54	4,24	10,77
Pk			16,57
Pd	γ = 1,4		23,19
Qd	·		3,13

Trave	(15-18)	Solaio C	
Predimensionamento		•	
Altezza	Larghezza	Area	Peso [Kn/mc]
0,5	0,3	0,15	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	3,75		3,75
Solaio interno	0,50	4,10	2,05
Solaio tetto	2,54	4,24	10,77
Pk			16,57
Pd	γ = 1,4		23,19
Qd			3,13

Tabella 24: Piano C - Travi perimetrali non sollecitate direttamente (metri e KN/m)

Trave	(1-2)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		4,5
Solaio interno	2,55	4,10	10,44
Fascia piena interna	0,1		0,6
Tamponatura			3,91
Pk			19,45
Pd	y = 1,4		27,24
Qd	y = 1,5		2,55

Trave	(2-3)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	2,55	4,10	10,44
Fascia piena interna	0,1		0,6
Tamponatura			3,91
Pk			19,45
Pd	y = 1.4		27,24
Qd	γ = 1,5		2,55

Trave	(12-13)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,3	0,3	0,09	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	2,5		2,25
Solaio interno	2,3	4,10	9,42
Fascia piena interna	0,1		0,6
Tamponatura			0
Pk			12,27
Pd	y = 1,4		17,18
Qd	γ = 1,5		2,3

Trave	(16-17)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,25		4,5
Solaio interno	1,88	4,10	7,7
Fascia piena interna	0,1		0,6
Tamponatura			3,91
Pk			16,71
Pd	γ = 1,4		23,39
Qd	γ = 1,5		1,88

Trave	(17-18)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	1,88	4,10	7,7
Fascia piena interna	0,1		0,6
Tamponatura			3,91
Pk			16,71
Pd	y = 1,4		23,39
Qd	γ = 1,5		1,88

Tabella 25: Piano C - Travi perimetrali sollecitate direttamente (metri e KN/m)

Trave	(8-9)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,3	0,3	0,09	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	2,5		2,25
Solaio interno	2,3	4,10	9,42
Fascia piena interna	0,1		0,6
Pk			12,27
Pd	γ = 1,4		17,18
Qd	y = 1.5		2,3

l rave	(5-6)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,25		4,5
Solaio interno	5,33	4,10	21,83
Fascia piena interna	0,1		0,6
Pk			26,93
Pd	γ = 1,4		37,7
Qd	γ = 1,5		5,33

Trave	(6-7)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	5,33	4,10	21,83
Fascia piena interna	0,1		0,6
Pk			26,93
Pd	γ = 1,4		37,7
Qd	γ = 1,5		5,33

Trave	(14-15)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	4,18	4,10	17,12
Fascia piena interna	0,1		0,6
Pk			22, 22
Pd	γ = 1,4		31,11
Qd	γ = 1,5		4,18

Trave	(9-10)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,25		4,5
Solaio interno	5,38	4,10	22,04
Fascia piena interna	0,1		0,6
Pk			27,14
Pd	γ = 1,4		37,99
Qd	y = 1.5		5,38

Trave	(10-11)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	5,38	4,10	22,04
Fascia piena interna	0,1		0,6
Pk			27,14
Pd	γ = 1,4		37,99
Qd	γ = 1,5		5,38

Trave	(13-14)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,25		4,5
Solaio interno	4,18	4,10	17,12
Fascia piena interna	0,1		0,6
Pk			22, 22
Pd	γ = 1,4		31,11
Qd	γ = 1,5		4,18

Tabella 26: Piano C - Travi alte interne sollecitate direttamente (metri e KN/m)

Trave	(2-6)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		3,6
Solaio interno	1	4,10	4,1
Pk			7,7
Pd	γ = 1,4		10,77
Qd	γ = 1,5		1

Trave	(6-10)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		3,6
Solaio interno	1	4,10	4,1
Pk			7,7
Pd	γ = 1,4		10,77
Qd	γ = 1,5		1

Trave	(10-14)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		3,6
Solaio interno	1	4,10	4,1
Pk			7,7
Pd	γ = 1,4		10,77
Qd	γ = 1,5		1

Trave	(14-17)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	3,75		3,6
Solaio interno	1	4,10	4,1
Pk			7,7
Pd	γ = 1,4		10,77
Qd	v = 1,5		1

Trave	(5-9)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		3,6
Solaio interno	1	4,10	4,1
Pk			7,7
Pd	γ = 1,4		10,77
Qd	γ = 1,5		1

Trave	(9-13)	Solaio C	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		3,6
Solaio interno	1	4,10	4,1
Pk			7,7
Pd	y = 1,4		10,77
Qd	γ = 1,5		1

Tabella 27: Piano C - Travi interne a spessore (metri e KN/m)

Piano D (copertura):

Trave	(13-14, 9-10, 5-6)		Solaio D
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,25		3,6
Solaio interno	1	4,24	4,24
Pk			7,84
Pd	γ = 1,4		10,97
Qd	γ = 1,5		1,03

Trave	(16-17, 1-2)		Solaio D
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,25		3,6
Solaio interno	0,5	4,24	2,12
Pk			5,72
Pd	y = 1,4		8,01
Qd	γ = 1,5		0,52

(14-15, 10-11, 6	-7)	Solaio D
Larghezza	Area	Peso [Kn/mc]
0,6	0,14	25
L (m)	Kn/mq	Kn/m
4,5		3,6
1	4,24	4,24
		7,84
y = 1,4		10,97
γ = 1,5		1,03
	Larghezza 0,6 L (m) 4,5 1 y = 1,4	0,6 0,14 L (m) Kn/mq 4,5 1 4,24 Y = 1,4

Trave	(2-3, 17-18)		Solaio D
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		3,6
Solaio interno	0,5	4,24	2,12
Pk			5,72
Pd	γ = 1,4		8,01
Qd	γ = 1,5		0,52

Trave	(8-9)		Solaio D
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	2,5		3,6
Solaio interno	1	4,24	4,24
Pk			7,84
Pd	y = 1,4		10,97
Qd	γ = 1,5		1,03

Trave	(12-13, 4-5)		Solaio D
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,24	0,6	0,14	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	2,5		3,6
Solaio interno	0,5	4,24	2,12
Pk			5,72
Pd	γ = 1,4		8,01
Qd	γ = 1,5		0,52

Tabella 28: Piano D - Travi interne a spessore (metri e KN/m)

Co	lm	10

Trave	(14-17)	Solaio D	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	3,75		4,5
Solaio interno	5,78	4,24	24,48
Fascia piena interna	0,1		0,6
Pk			29,58
Pd	γ = 1,4		41,42
Qd	γ = 1,5		5,96

Trave	(10-14)	Solaio D	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		4,5
Solaio interno	5,78	4,24	24,48
Fascia piena interna	0,1		0,6
Pk			29,58
Pd	γ = 1,4		41,42
Qd	γ = 1,5		5,96

Trave	(6-10)	Solaio D	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		4,5
Solaio interno	5,78	4,24	24,48
Fascia piena interna	0,1		0,6
Pk			29,58
Pd	γ = 1,4		41,42
Qd	γ = 1,5		5,96
	_	- , ,, 00	

Trave	(2-6)	Solaio D	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	5,78	4,24	24,48
Fascia piena interna	0,1		0,6
Pk			29,58
Pd	γ = 1,4		41,42
Qd	γ = 1,5		5,96

Tabella 29: Piano D - Travi interne alte (metri e KN/m)

Trave	(13-16)	Solaio D	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	3,75		4,5
Solaio interno	3,24	4,24	13,72
Fascia piena interna	0,1		0,6
Pk			18,82
Pd	γ = 1,4		26,35
Qd	γ = 1,5		3,34

Trave	(1-5)	Solaio D	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,5		4,5
Solaio interno	3,24	4,24	13,72
Fascia piena interna	0,1		0,6
Pk			18,82
Pd	γ = 1,4		26,35
Qd	γ = 1,5		3,34

Trave	(9-13)	Solaio D	
Predimensionamento			
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	4,6		4,5
Solaio interno	4,53	4,24	19,19
Fascia piena interna	0,1		0,6
Pk			24, 29
Pd	γ = 1,4		34
Qd	y = 1,5		4,67

Trave	(5-9)	Solaio D	
Predimensionamento		•	
Altezza	Larghezza	Area	Peso [Kn/mc]
0,6	0,3	0,18	25
Carichi	L (m)	Kn/mq	Kn/m
Peso trave	6,15		4,5
Solaio interno	4,53	4,24	19,19
Fascia piena interna	0,1		0,6
Pk			24, 29
Pd	y = 1,4		34
Qd	y = 1,5		4,67

Tabella 30: Piano D - Travi perimetrali sollecitate direttamente (metri e KN/m)

Pilastri

I pilastri si predimensionano in funzione di tutti i carichi verticali che gravano su di essi. Il metodo adottato è quello semplificato delle aree di influenza. Per ogni elemento infatti si computa l'area di interesse e calcolarne quindi, in forma più o meno grossolana, il peso considerando sia il contributo dei carichi permanenti che quelli variabili. La sezione del pilastro al piano k è dimensionata quindi secondo la relazione:

$$N_{IK} = \sum_{j=k+1}^{n} A_{ij} W_{ij} + P_{pij}$$

dove

 P_{pij} = peso pilastro n = numero complessivo dei piani

La normativa italiana, prevede che la sezione di un pilastro soggetto a compressione semplice debba soddisfare la seguente condizione:

$$A_p = \frac{N_{dik}}{0.8 f_{cd}}$$

Considerando che il dimensionamento a compressione semplice non tiene conto della presenza di momento flettente e che il pilastro è soggetto a una rottura di tipo fragile (è bene quindi che non lavori ai limiti delle sue possibilità), conviene amplificare la sezione minima prevista dalla normativa attraverso un coefficiente di sicurezza minore di 0.8, ad esempio 0,7:

$$A_p = \frac{N_{dik}}{0.6 \, \overline{f_{cd}}}$$

Nel caso in esame il pilastro più sollecitato a sforzo assiale è il P10 (area d'influenza maggiore):

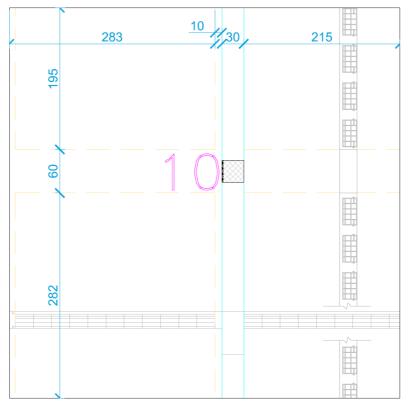


Fig. 29: Area d'influenza pilastro P10

Estensione area di influenza: A = (2,93+2,05)*(2,1+2,87) = 24,75 mq. In prima fase si stimano le dimensioni della sezione pari a **30 cm x 30 cm**.

Stima dei carichi

Il carico ripartito degli elementi strutturali è il seguente:

Elemento	Larghezza (m)	Altezza (m)	Area (m²)	Peso (KN/m³)	Peso (KN/m)
Pilastro	0,3	0,3	0,09	25	2,25
Trave alta	0,3	0,6	0,18	25	4,5
Trave a spessore	0,6	0,24	0,14	25	3,6

Tabella 31: Peso distribuito degli elementi strutturali nella zona d'influenza pilastro P10

Ogni piano contribuisce al carico totale del pilastro 10 di base:

Piani A e B (Piano terra e primo piano):

Carico	Influenza (m)	Influenza (m²)	Peso (KN/m²)	Peso (KN/m)	Qk (KN)	Qd (KN)
SOLAIO						
Permanente	-	28,89	4,9	-	141,56	198,19
Variabile	-	28,89	2	-	57,78	86,67
TRAVI ALTE						
Trave 9-10	3,13	-	-	4,5	14,09	19,72
Trave 10-11	2,25	-	-	4,5	10,13	14,18
TRAVIA SPESSORE						
Trave 6-10	3,07	-	-	3,6	11,05	15,47
Trave 10-14	2,3	-	-	3,6	8,28	11,59
TOTALE						345,82

Tabella 32: Carichi presenti nell'area di influenza pilastro P10- Piani A e B

Piano C (Sottotetto):

Carico	Influenza (m)	Influenza (m²)	Peso (KN/m²)	Peso (KN/m)	Qk (KN)	Qd (KN)
SOLAIO						
Permanente	-	28,89	4,1	-	118,45	165,83
Variabile	-	28,89	1	-	28,89	43,34
TRAVI ALTE						
Trave 9-10	3,13	-	-	4,5	14,09	19,72
Trave 10-11	2,25	-	-	4,5	10,13	14,18
TRAVIA SPESSORE						
Trave 6-10	3,07	-	-	3,6	11,05	15,47
Trave 10-14	2,3	-	-	3,6	8,28	11,59
TOTALE						270,13

Tabella 33: Carichi presenti nell'area di influenza pilastro P10 - Piano C

Piano D (Copertura):

Carico	Influenza (m)	Influenza (m²)	Peso (KN/m²)	Peso (KN/m)	Qk (KN)	Qd (KN)						
SOLAIO												
Permanente	-	28,89	4,24	-	122,5	171,49						
Variabile	-	28,89	1,03	-	29,76	44,64						
TRAVIA SPESSORE												
Trave 9-10	3,13	-	-	3,6	11,27	15,78						
Trave 10-11	2,25	-	-	3,6	8,1	11,34						
TRAVIALTE						•						
Trave 6-10	3,07	-	-	4,5	13,82	19,34						
Trave 10-14	2,3	-	-	4,5	10,35	14,49						
TOTALE		•				277,08						

Tabella 34: Carichi presenti nell'area di influenza pilastro P10 - Piano D

Il pilastro è alto 1+3+3+2,3=9,3 m, quindi il contributo al peso è $9,3 \times 2,25=21$ KN.

Il carico complessivo alla base del pilastro P10 sarà quindi: P = 345,82 + 345,82 + 270,13 + 277,08 + 21 = 1260 KN.

L'area minima necessaria è quindi $A = (1260 * 1000) / (0,6 * 15,78) = 133080 \text{ mm}^2$.

L'area della sezione 300mm x 300mm è 90000 mm², ne consegue che la sezione inizialmente ipotizzata è risultata insufficiente.

Si sceglie quindi la sezione 40cm x 40cm di area pari a 160000 mm².

Scala

La scala di questo edificio collega il piano terra con il primo piano, e si è scelto il modello di trave a ginocchio.

Problematiche geometriche e funzionali

In prima fase va definita la pedata e l'alzata dei gradini, legate tra loro da un rapporto funzionale connesso al passo dell'uomo espresso dalla relazione

$$2a + p \sim 63$$

con a = alzata e p = pedata, espressi in centimetri.

E' stata considerata $\mathbf{a} = 17$ cm (edificio per abitazione), quindi $\mathbf{p} = 63 - 2 \times 17 = 29$ cm.

Considerando l'altezza di interpiano pari a 300 cm e dividendola per l'alzata, approssimando al valore intero più vicino si ha 300 / 17 = 17,64 = **18** gradini, **9** per **rampa**.

Considerando il flusso di una persona alla volta, si è adottata una rampa larga 100 cm .

Il pianerottolo intermedio è stato fissato largo pari all'estensione di due rampe, più 10 cm di ringhiera, ovvero **210 cm**.

Il pianerottolo è posizionato a 9 * 17 = **153 cm** dal piano terra.

Lo spessore de pianerottolo è stato posto pari a **20 cm**, mentre la soletta dei gradini è spessa **4 cm**. Sono presenti anche **2 cm** di intonaco per rivestire la soletta e il pianerottolo.

Per ottenere il minimo ingombro in pianta della scala è necessario far coincidere i fili finiti delle pedate della rampa di arrivo e di partenza. Tuttavia ciò non è stato possibile in quanto, per ottenere che le superfici di intradosso delle rampe e dei pianerottoli si sviluppino senza discontinuità e che il corrimano abbia andamento continuo, è stato necessario prevedere uno sfalsamento (s_f) in avanti in pianta di gradini.

Lo sfalsamento dei gradini, lo spessore della soletta della rampa (r) e quello del pianerottolo (s) sono legati tra loro da vincoli geometrici; noti $\mathbf{r} = 4 + 2 = \mathbf{6}$ cm e $\mathbf{s} = 20 + 2 = \mathbf{24}$ cm, si ha:

$$S_f = 2 \cdot \left(\frac{s \cos(\phi) - r}{\sin(\phi)} \right) - p \quad \text{con} \quad \phi = \arctan\left(\frac{a}{p} \right)$$

In questo caso si ha φ = 0,53 rad = 30° e s_f = 22 cm.

Gradini e pianerottolo

Date le luci usuali nei gradini non è necessario effettuarne un predimensionamento in quanto la sezione data dai valori dell'alzata e della pedata garantisce sufficientemente la stabilità. Il calcolo si effettua ipotizzando che ciasciuno di essi sopporti interamente il carico agente indipendentemente dagli altri gradini, anche se - come precedentemente indicato - si realizza una soletta inferiore che li collega mutuamente e migliora il comportamento strutturale.

Carichi gradino:

Per l'entità dei carichi variabili si è considerato l'ambiente 5 (scale comuni, si veda Fig. 4).

		Peso proprio									
Materiale	Larghezza (m)	Area (m²)	Peso (KN/m³)	Peso (KN/m²)	Peso (KN/m)						
Gradino	-	0,025	25	-	0,62						
Soletta	-	0,013	25	-	0,34						
Intonaco (2 cm)	-	0,336	-	0,3	0,10						
Marmo pedata (2 cm)	0,320	-	-	0,8	0,26						
Allettamento pedata (2 cm)	-	0,006	20	-	0,12						
Marmo alzata (2 cm)	0,150	-	ı	0,8	0,12						
Allettamento alzata (2 cm)	-	0,002	20	-	0,03						
TOTALE					1,58						
	So	vraccarichi var	iabili								
	Larghezza (m)			Peso (KN/m²)	Peso (KN/m)						
	0,32			4	1,28						
	Carico concentrato										
Materiale	Larghezza (m)			Peso (KN/m)	Peso (KN)						
	0,34			0,5	0,17						

Tabella 35: Analisi dei carichi per il singolo gradino

Quindi $G_d = 1.58 * 1.4 = 2.21 \text{ KN/m} e Q_d = 1.28 * 1.5 = 1.92 \text{ KN/m}$.

Carichi pianerottolo:

Si sono considerati i carichi per una larghezza di 1m di pianerottolo:

		Peso proprio			
Materiale	Spessore (m)	Larghezza (m)	Peso (KN/m³)	Peso (KN/m²)	Peso (KN/m)
Soletta	0,20	1	25	=	5,00
Intonaco (2 cm)	0,02	1	=	0,3	0,30
Rivestimento in marmo (2 cm)	0,02	1	=	0,8	0,80
Allettamento (2 cm)	0,02	1	20	=	0,40
TOTALE					6,50
	Sc	vraccarichi vari	iabili		
	Larghezza (m)			Peso (KN/m²)	Peso (KN/m)
	1]		4	4,00

Tabella 36: Analisi dei carichi per il pianerottolo intermedio

Quindi $G_d = 6.5 * 1.4 = 9.1 \text{ KN/m}$ e $Q_d = 4 * 1.5 = 6 \text{ KN/m}$. Sulle travi che sorreggono il pianerottolo sarà presente quindi un carico $P_d = 9.1 + 6 = 15.1 \text{ KN/m}$.

Carichi trave a ginocchio

Il gradino si comporta come una mensola che trasmette alla trave un momento torcente ed un carico verticale che va proiettato lungo la direzione di quest'ultima:

Analisi dei carichi: Scala $P^*L = P_0^*L_0 \qquad L = L_0^*\cos\alpha$ $P^*L_0^*\cos\alpha = P_0^*L_0 \qquad P^*\cos\alpha = P_0$ Mto (kN*m/m) P(kN/m) P(kN/m) P(kN/m) P(kN/m) P(kN/m) P(kN/m) P(kN/m)

Fig. 30: Schema dei carichi sulla trave a ginocchio

Per il predimensionamento della trave ci si può riferire allo stesso criterio utilizzato per le travi del telaio, ovvero $H = L / (10 ^ 12)$. Considerando anche la presenza di torsione, si è adottata la sezione **30cm** x **60cm** (la trave quindi avrà un carico pari a $0.3 \times 0.6 \times 25 = 4.5 \times 10^{-6}$ KN/m).

Considerando una porzione di scala profonda 1m, essendo ogni gradino largo 0,34 m, ne saranno presenti 2,94.

Considerando i carichi precedentemente individuati per il gradino e data la larghezza della rampa pari a 1m, il carico P_0 sulla trave è pari a $P_0 = [(Q_d + G_d) \cdot 1 \cdot 2,94 + 0,5] \cdot \cos(\phi)$ Quindi $P_0 = [(2,21+1,92)*1*2,94+0,5] * \cos(30°) = 10,9 KN/m$. Considerando il peso della trave a ginocchio, si ha $P_d = 10,9 + 4,5 = 15,4$ KN/m .

Il momento torcente distribuito che graverà sulla trave a ginocchio è quindi dato da:

$$M_{t0} = \left[\frac{(G_d + Q_d) \cdot L^2}{2} + \frac{(G_d + Q_d) \cdot L \cdot b}{2} + F_d \cdot (L + \frac{b}{2}) \right] \cdot \cos^2(\phi)$$

con b = 0.3 m, si ha M_{t0} = 6.3 KN m / m.

Analisi delle sollecitazioni

Per poter effettuare l'analisi delle sollecitazioni negli elementi strutturali è necessario definire il modello di calcolo del telaio da adottare.

Modellazione telaio

La modellazione tridimensionale della struttura è stata eseguita con SAP2000 v.10 e v. 11. Si è proceduto costruendo il telaio spaziale facendo riferimento alle distanze tra gli interassi degli elementi strutturali (pilastri e travi collegati con vincoli di continuità). Laddove siano presenti travi con altezze diverse (o pilastri con sezioni diverse) e quindi con assi sfalsati tra loro, si è posto il nodo ad una quota intermedia tra gli assi oppure, se il contributo all'equilibrio statico della struttura della trave è decisamente prevalente rispetto all'altra che concorre nello stesso nodo, quest'ultimo è stato posto alla quota d'asse della trave più importante (come nel caso di travi alte portanti e travi a spessore). Gli elementi del modello sono stati impostati con le caratteristiche delle sezioni e dei materiali precedentemente predimensionate.

Le fondazioni sono state modellate come incastri ai piedi dei pilastri, poste ad una profondità di 1m sotto il piano terra.

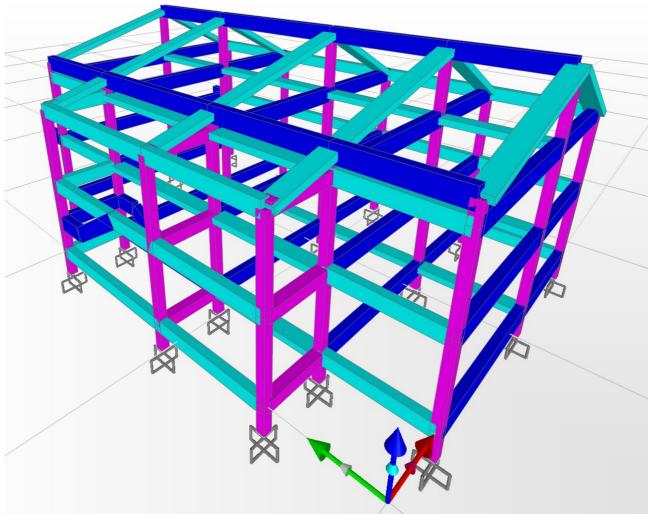


Fig. 31: Rendering della modellazione del telaio in SAP2000 v. 11

Combinazioni di carico

Una volta completata l'analisi dei carichi si carica il modello del telaio in modo da ottenere le sollecitazioni più gravose per lo stato limite ultimo, per i quali i coefficienti di sicurezza sono gli stessi dell'analisi per il solaio (1,4 per i permanenti, 1,5 per i variabili).

Per ottenere i massimi momenti positivi in campata è necessario caricarle in maniera alternata con la regola della "scacchiera".

Si ha quindi che, essendo le travi adiacenti caricate in maniera molto diversa, i rispettivi momenti ai nodi saranno maggiormente squilibrati. Tale squilibrio sarà compensato dai momenti in testa ai pilastri e quindi in linea di massima si ottengono anche le sollecitazioni flettenti maggiori per i pilastri.

Per ottenere i massimi momenti negativi nei nodi andrebbero caricate le campate adiacenti al nodo per riprendere la scacchiera, ma è un'inutile complicazione non considerata nel modello.

Per considerare gli sforzi normali maggiori nei pilastri la condizione di carico da considerare ovviamente è quella nella quale sono presenti tutti i carichi contemporaneamente.

La scala è stata modellata esternamente applicando direttamente sulla trave a ginocchio il momento torcente distribuito e il carico P₀ precedentemente determinato. Dato che il pianerottolo appoggia su tre lati, esso è stato ritenuto sufficientemente rigido e quindi non trasmetterà alla trave i momenti torcenti.

In sintesi, sono stati definiti in SAP2000 i seguenti casi di carico:

- *PERM*: per tutti i carichi permanenti
- VAR1: per la prima combinazione a scacchiera
- *VAR2*: per la seconda combinazione a scacchiera

e le seguenti combinazioni di carico:

- COMB1: PERM + VAR1 (somma)
- COMB2: PERM + VAR2 (somma)
- COMB3: PERM + VAR1 + VAR2 (somma)
- ENV: COMB1 + COMB2 + COMB3 (inviluppo)

Per semplicità son stati posti pari a 1 i coefficienti di combinazione.

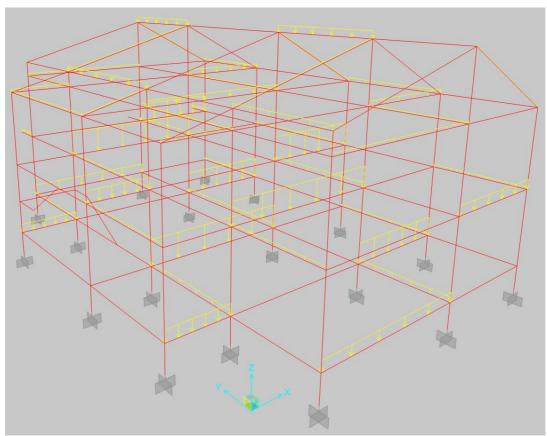


Fig. 32: Combinazione a scacchiera dei carichi - caso VAR1

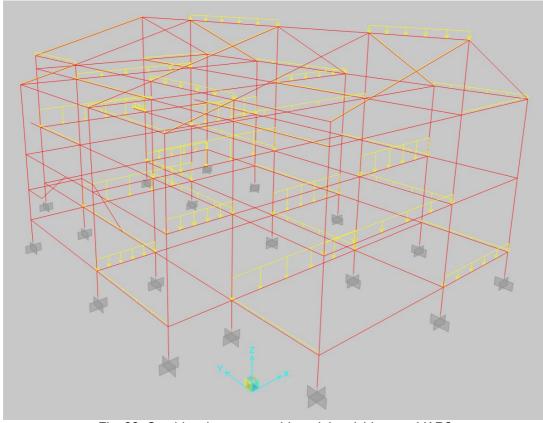


Fig. 33: Combinazione a scacchiera dei carichi - caso VAR2

Diagrammi di calcolo

Lanciata l'analisi sono stati ottenuti questi diagrammi (in forma qualitativa per la travata principale 8-9-10-11 e per la 2-6-10-14-17):

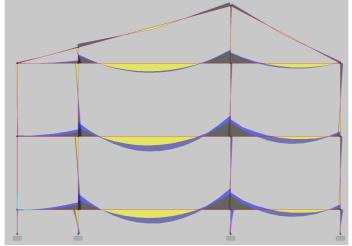


Fig. 34: Andamento momento travata 8-9-10-11

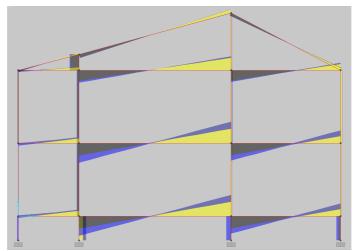


Fig. 35: Andamento taglio travata 8-9-10-11

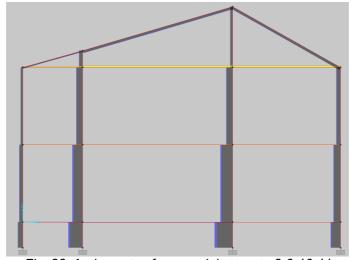


Fig. 36: Andamento sforzo assiale travata 8-9-10-11

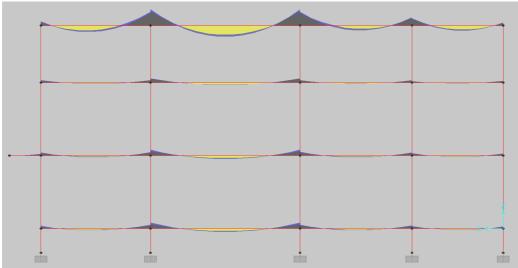


Fig. 37: Andamento momento travata 2-6-10-14-17

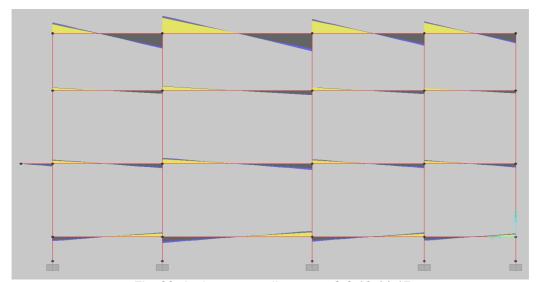


Fig. 38: Andamento taglio travata 2-6-10-14-17

Fig. 39: Andamento sforzo assiale travata 2-6-10-14-17

Dimensionamenti

Dopo l'analisi delle sollecitazioni si è proceduto al dimensionamento degli elementi strutturali del telaio (scala, travi, pilastri, fondazioni).

Travi

Modelli di calcolo

Una volta calcolati i diagrammi delle sollecitazioni del solaio tramite l'utilizzo del SAP2000 si possono progettare le armature delle travi. La normativa D.M. 09/01/96 p. 4.2.2.3.3. afferma che occorre, a causa dell'interazione tra taglio e flessione, traslare il diagramma dei momenti di un valore pari a:

$$a_1 = 0.9 d (1 - \cot \alpha)$$

dove α è l'angolo d'inclinazione delle armature di taglio.

Nel caso specifico verranno usate, come armature di taglio, solo staffe, quindi con α = 90°, cotg α = 0, **a= 0.9 d**.

Armatura longitudinale

La normativa (D.M. 09/01/96, par.7) fornisce anche alcune indicazioni sul predimensionamento minimo delle armature longitudinali. Alle estremità delle travi infatti deve essere disposta un'armatura inferiore in grado di assorbire allo stato limite ultimo uno sforzo di trazione pari al taglio:

$$A_{fmin} = \frac{T_d}{f_{vd}}$$

La percentuale di armatura, in zona tesa, deve rispettare il seguente minimo per barre ad aderenza migliorata:

$$A_{fmin} = 0.30 \% A_{h}$$

dove A_b è l'area della sezione in calcestruzzo.

Per quanto riguarda i nodi intermedi trave-pilastro si deve rispettare (secondo quanto prescritto dall'Eurocodice 2) un quantitativo di armatura inferiore non inferiore a:

$$A_{f,inf} \ge 0.25 A_{f,campata}$$

Il progetto dell'area minima delle armature longitudinali delle travi viene calcolata con la seguente formula già usata per le armature del solaio:

$$A_{long,min} = \frac{M_d}{0.9 d f_{vd}}$$

Anche nelle zone dove la sezione non è sottoposta a trazione è opportuno disporre di

Corso di "Tecnica delle costruzioni" - Prof. F. Paolacci - Anno 2006/2007 - Relazione tecnica progetto - Pag. 56 di 93

armature. In una trave infatti devono essere sempre presenti sia superiormente che inferiormente un numero di correnti (anche detti reggi-staffe) pari a quello delle braccia delle staffe che si impiegano.

Una volta calcolati i minimi suddetti, si procede alla scelta dei ferri in maniera tale che l'area effettiva dell'armatura risulti maggiore della richiesta delle sollecitazioni.

La distanza tra due tondini accostati non deve essere superiore al diametro del tondino stesso o a 2 cm.

Per determinare l'effettiva lunghezza dei ferri si deve calcolare il momento resistente della sezione tramite l'inversione della formula per il calcolo dell' area minima, inserendo al posto di quest'ultima l'area effettiva e giungendo alla lunghezza dei ferri confrontando tale momento resistente con il momento di calcolo.

Lunghezza di ancoraggio

E' importante considerare nella lunghezza delle armature un valore di ancoraggio per il passaggio delle tensioni tra calcestruzzo e ferri:

$$L_b = \frac{f_{yd} \cdot \phi}{4 f_{bd}}$$

dove f_{bd} è la resistenza di aderenza tra calcestruzzo e ferro.

La lunghezza di ancoraggio non può comunque essere inferiore a 20 diametri o a 15 cm. Per motivi di sicurezza viene usata la relazione approssimata L_b = 40 ϕ .

Dove non c'è spazio i ferri vengono opportunamente piegati di un valore che ci consente di arrivare alla lunghezza di ancoraggio minima.

Per lunghezze troppo elevate i ferri vengono spezzati dove il momento di calcolo è nullo e sovrapposti di una lunghezza pari a L_b.

Staffe

La procedura per il progetto delle armature a taglio si riassume in:

Verifica della biella compressa:

$$V_{dmax} > V_u = 0.3 \cdot f_{cd} \cdot b_w \cdot d$$

Calcolo del taglio portato dal calcestruzzo:

$$V_{cu} = 0.6 \cdot f_{ctd} \cdot b_w \cdot d$$

• Calcolo del quantitativo minimo di armatura a taglio previsto dalla normativa:

$$(A_{sw}/s)_{min}=1,5\cdot b_{w}$$

• Ipotizzato il diametro delle staffe si calcola l'area A_{sw} corrispondente a quest'ultimo e si determina il passo delle staffe sfruttando il rapporto dato dalla relazione precedente. La normativa richiede che il passo rispetti le prescrizioni:

$$s < min(0,33;0,8d)$$
 (sempre)

 $s < 12\phi_{L,min}$ (per una distanza d intorno agli appoggi e carichi concentrati)

• Calcolo del taglio portato dalle staffe

$$V_{su} = 0.9 d \cdot f_{vd} \cdot A_{sw} / s$$

• Calcolo del taglio resistente della sezione armata con Asw/s tramite:

$$V_{ru} = min(V_c + V_{su}; 2V_{su})$$

Di seguito si deve confrontare quest'ultimo valore del taglio con il taglio agente nelle

sezioni e si prospettano due possibilità: se il $V_{ru}(min) > V_d$, allora il passo scelto per le staffe è corretto; di contro, se $V_{ru}(min) < V_d$, si deve provvedere all'infittimento del passo delle staffe; solitamente questa è una situazione riscontrabile nelle zone degli appoggi.

Armature

In questo progetto si sono dimensionate le travi corrispondenti alla travata più sollecitata (8-9-10-11) e le travi di colmo della copertura.

Piano A (piano terra):

Sez	ione	Md	Td	As (md)	As (Td)	As minima	14	20	As eff (mm²)	M resisitente
D:LO	Sup	-8,6		42,98		540	4	0	615,44	-123,13
Pil 8	Inf		19		0	135	4	0	615,44	
Dillo	Sup	-162		809,72		809,72	4	1	929,44	-185,95
Pil 9	Inf		202		517,95	517,95	4	0	615,44	
D:1.40	Sup	-218		1089,62		1089,62	4	2	1243,44	-248,78
Pil 10	Inf		218		558,97	558,97	4	0	615,44	
D11.44	Sup	-52		259,91		540	4	0	615,44	-123,13
Pil 11	Inf		130		333,33	333,33	4	0	615,44	
	Sup					0	4	0	615,44	123,13
Α	Inf	2,6	0	13	0	540	4	0	615,44	
_	Sup					0	4	0	615,44	
В	Inf	143	0	714,75	0	714,75	4	1	929,44	185,95
	Sup					0	4	0	615,44	
С	Inf	74	0	369,87	0	540	4	1	929,44	185,95

Tabella 37: Armature longitudinali trave piano terra 8-9-10-11

	Verifica bie	lle compresse		to dal calces	truzzo	(Asw/s)min	(
Cls	Fcd	Vu (KN)	Vd agente	Fctd	δ	Vc (KN)	(cm2/m)	
Rck 30	15,79	810	0	1,15	1	118,01	3,14	
Pas	SO			Passo staffe				
0,8*d	33 cm	S(m)	S eff (m)	Vsu (KN)	V rd (KN) min		
45,6	33	34,89	30	104,7	209,41	222,72		
Sezi	one	Vsu min	(KN)	Asw/s [cm2/m]	S(cm)	12 Ф min (cm)	Effettiva	
lastro 8	Sx Dx	-99,01	9,5	47,48	330,64	16,8	16	
Sezi	one	Vsu min	(KN)	Asw/s [cm2/m]	S(cm)	12 Φ min (cm)	Effettiva	
lastro 9	Sx Dx	-50,01 83,99	34 101	169,94 504,82	92,39 31,1	·	16 16	
Sezi	one	Vsu min	(KN)	Asw/s [cm2/m]	S(cm)	12 Ф min (cm)	Effettiva	
lastro 10	Sx Dx	99,99 61,99	109 90	544,81 449,84	28,82 34,9	·	16 16	
Sezi	one	Vsu min	(KN)	Asw/s [cm2/m]	S(cm)	12 Φ min (cm)	Effettiva	
lastro 11	Sx Dx	11,99	65	324,89	48,32	16,8	16	
	Dx	Taballa 2	Q. Armatura	traavaraali tr	ovi piano t	orra 8-0-10-1		

Tabella 38: Armature trasversali travi piano terra 8-9-10-11

Piano B (primo piano):

Sez	ione	Md	Td	As (md)	As (Td)	As minima	14	20	As eff (mm²)	M resisitente
Pil 8	Sup	-12		59,98		540	4	0	615,44	-123,13
PII 0	Inf		25		64,1	135	4	0	615,44	
Pil 9	Sup	-142		709,75		709,75	4	1	929,44	-185,95
FII 9	Inf		200		512,82	512,82	4	0	615,44	
Pil 10	Sup	-217		1084,62		1084,62	4	2	1243,44	-248,78
PILIU	Inf		221		566,67	566,67	4	0	615,44	
Pil 11	Sup	-53		264,91		540	4	0	615,44	-123,13
PILTI	Inf		131		335,9	335,9	4	0	615,44	
Α	Sup			0		540	4	0	615,44	-123,13
Α	Inf		0	0	0	540	4	0	615,44	
В	Sup					0	4	0	615,44	
В	Inf	155	0	774,73	0	774,73	4	1	929,44	185,95
_	Sup					0	4	0	615,44	
С	Inf	76	0	379,87	0	540	4	1	929,44	185,95

Tabella 39: Armature longitudinali trave primo piano 8-9-10-11

	Verifica bie	lle compresse						Φsta
Cls	Fcd	Vu (KN)	Vd agente	Fctd	.δ	Vc (KN)	(cm2/m)	10
Rck 30		810	0	1,15	1	118,01	3,14	15
Pass	20			Passo staffe				
0,8*d	33 cm	S (m)	S eff (m)	Vsu (KN)	V rd	(KN) min		
45,6	33	34,89	30	104,7	209,41	222,72		
						•		
Sezio	one	Vsu mir	ı (KN)	Asw/s	S(cm)	12 Φ min (cm)	Effettiva	
	Sx			[cm2/m]				
Pilastro 8	Dx	-93,01	12,5	62,48	251,29	16,8	16	
		•	•	•	•	,		
Sezio	one	Vsu mir	(KN)	Asw/s	S(cm)	12 Φ min (cm)	Effettiva	
		_		[cm2/m]	` ′	,		
Pilastro 9	Sx Dx	-57,01 81,99	30,5 100	152,45 499,83	102,99 31,41	16,8 16,8	16 16	
	DX	01,99	100	499,00	31,41	10,0	10	
Sezio	nne	Vsu mir	(KN)	Asw/s	S(cm)	12 Ф min (cm)	Effettiva	
Jezit		_		[cm2/m]	` '	,		
Pilastro 10	Sx	102,99	110,5	552,31	28,43	16,8	16	
naotro 10	Dx	60,99	89,5	447,34	35,1	16,8	16	
•		., .	(10)	Asw/s	0 ()	40 + 11 / 1	= "	
Sezio	one	Vsu mir	(KN)	[cm2/m]	S(cm)	12 Φ min (cm)	Effettiva	
Pilastro 11	Sx	12,99	65,5	327,39	47,96	16,8	16	
- IIasiiU II	Dx	$>\!\!<$	$>\!\!<$	$>\!\!<$	$>\!\!<$	\sim	$>\!\!<$	

Tabella 40: Armature trasversali travi primo piano 8-9-10-11

Piano C (sottotetto):

Sez	ione	Md	Td	As (md)	As (Td)	As minima	14	20	As eff (mm²)	M resisitente
Pil 8	Sup	-6,5		32,49		540	4	0	615,44	-123,13
PIIO	Inf		19		48,72	135	3	0	461,58	
Pil 9	Sup	-92		459,84		540	4	0	615,44	-123,13
PII 9	Inf		128		328,21	328,21	3	0	461,58	
D:140	Sup	-141		704,75		704,75	5	0	769,3	-153,91
Pil 10	Inf		144		369,23	369,23	3	0	461,58	
Pil 11	Sup	-14		69,98		540	4	0	615,44	-123,13
PILTT	Inf		78		200	200	3	0	461,58	
	Sup					0	3	0	461,58	123,13
Α	Inf	2,3	0	11,5	0	540	4	0	615,44	
ь.	Sup					0	3	0	461,58	
В	Inf	98	0	489,83	0	540	4	0	615,44	123,13
0	Sup					0	3	0	461,58	
С	Inf	55	0	274,9	0	540	4	0	615,44	123,13

Tabella 41: Armature longitudinali trave sottotetto 8-9-10-11

	Verifica bie	elle compresse		Porta	ito dal calce	(Asw/s)min	Φ staffe	
Cls	Fcd	Vu (KN)	Vd agente	Fctd	δ	Vc (KN)	(cm2/m)	10
Rck 30	264,91	810	0	1,15	1	118,01	3,14	157

Pas	sso sso			Passo staffe				
0,8*d	33 cm	S (m)	S eff (m)	Vsu (KN)	V rd (KN) min		
45,6	33	34,89	30	104,7	209,41	222,72		

Sezio	ne	Vsu min	(KN)	[cm2/m]	S (cm)	12 Φ min (cm)	Effettiva
Pilastro 8	Sx Dx	-99,01	9,5	47,48	330,64	16,8	16
Sezio	ne	Vsu min	(KN)	Asw/s [cm2/m]	S (cm)	12 Ф min (cm)	Effettiva
Pilastro 9	Sx Dx	-86,01 9,99	16 64	79,97 319,89	196,32 49,08	16,8 16,8	16 16
Sezio	ne	Vsu min	(KN)	Asw/s [cm2/m]	S (cm)	12 Φ min (cm)	Effettiva
Pilastro 10	Sx Dx	25,99 1,99	72 60	359,87 299,9	43,63 52,35	16,8 16,8	16 16

Sezion	ne	Vsu min	(KN)	Asw/s [cm2/m]	S (cm)	12 Ф min (cm)	Effettiva
Dilantan 44	Sx	-40,01	39	194,93	80,54	16,8	16
Pilastro 11	Dx		>><	~	>>	~	>

Tabella 42: Armature trasversali trave sottotetto 8-9-10-11

Piano D (copertura):

Sez	ione	Md	Td	As (md)	As (Td)	As minima	14	20	As eff (mm²)	M resisitente
Pil 8	Sup	-8,5		115,32		432	4	0	615,44	-123,13
PIIO	Inf		15		38,46	108	4	0	615,44	
Dillo	Sup	-36		488,4		432	4	0	615,44	-123,13
Pil 9	Inf		37		94,87	108	4	0	615,44	
Pil 10	Sup	-40		542,67		432	4	0	615,44	-123,13
PILIO	Inf		38		97,44	108	4	0	615,44	
D:1.44	Sup	-18		244,2		432	4	0	615,44	-123,13
Pil 11	Inf		25		64,1	108	4	0	615,44	
	Sup					0	4	0	615,44	123,13
Α	Inf	2,3	0	31,2	0	432	4	0	615,44	
Б	Sup					0	4	0	615,44	
В	Inf	23	0	312,03	0	432	4	0	615,44	123,13
	Sup					0	4	0	615,44	
С	Inf	13	0	176,37	0	432	4	0	615,44	123,13

Tabella 43: Armature longitudinali trave copertura 8-9-10-11

	Verifica bie	elle compresse		Porta	ato dal calces	struzzo	(Asw/s)min	(
Cls	Fcd	Vu (KN)	Vd agente	Fctd	δ	Vc (KN)	(cm ² /m)	
ck 30		14742	15	1,15	1	86,96	3,14	
								(sta
Pass				Passo staffe				
,8*d	33 cm	S(m)	S eff (m)	Vsu (KN)		(KN) min		
16,8	33	17,44	30	104,7	296,36	296,36		
Sezio	one	Vsu mir	ı (KN)	Asw/s [cm2/m]	S(cm)	12 Φ min (cm)	Effettiva	
	Sx	<u> </u>	>		><		><	
astro 8	Dx	-71,96	7,5	37,49	418,81	16,8	16	-
		_						
Sezio	ne	Vsu mir	(KN)	Asw/s	S(cm)	12 Φ min (cm)	Effettiva	
00210	-			[cm2/m]	,	, ,		
astro 9	Sx	-71,96	7,5	37,49	418,81	16,8	16	
	Dx	-49,96	18,5	92,47	169,79	16,8	16	
				Asw/s				
Sezio	one	Vsu mir	ı (KN)	[cm2/m]	S(cm)	12 Φ min (cm)	Effettiva	
	Sx	-48,96	19	94,97	165,32	16,8	16	•
stro 10	Dx	-57,96	14,5	72,47	216,63	16,8	16	
		_						
Sezio	nne	Vsu mir	ı (KN.)	Asw/s	S(cm)	12 Φ min (cm)	Effettiva	
00210				[cm2/m]	<u> </u>	· /		
stro 11	Sx	-61,96	12,5	62,48	251,29	16,8	_ 16 _	_
0	Dx	\sim	$>\!\!<$	$>\!\!<$	$>\!\!<$	\sim	$>\!\!<$	_

Corso di "Tecnica delle costruzioni" - Prof. F. Paolacci - Anno 2006/2007 - Relazione tecnica progetto - Pag. 61 di 93

Sez	ione	Md	Td	As (md)	As (Td)	As minima	14	20	As eff (mm²)	M resisitente
D:LO	Sup	-33		164,94		540	4	0	615,44	-123,13
Pil 2	Inf		91		0	135	2	0	307,72	
Dillic	Sup	-134		669,77		669,77	2	2	935,72	-187,21
Pil 6	Inf		146		374,36	374,36	3	0	461,58	
D'' 40	Sup	-132		659,77		659,77	3	1	775,58	-155,17
Pil 10	Inf		145		371,79	371,79	3	0	461,58	
50.44	Sup	-67		334,88		540	4	0	615,44	-123,13
Pil 14	Inf		101		258,97	258,97	2	0	307,72	
	Sup	-25		124,96	•	540	4	0	615,44	-123,13
Pil 17	Inf		80	,	205,13	205,13	2	0	307,72	,
	Sup					0	2	0	307,72	123,13
Α	Inf	54	0	269,91	0	540	4	0	615,44	,
	Sup			,-		0	2	0	307,72	
В	Inf	93	0	464,84	0	540	4	0	615,44	123,13
	Sup			,		0	2	0	307,72	,
С	Inf	40	0	199,93	0	540	4	0	615,44	123,13
	Sup	.0	· ·		ŭ	0	2	Ö	307,72	3, .0
D	Inf	43	0	214,92	0	540	4	Ö	615,44	123,13

Tabella 45: Armature longitudinali trave di colmo 2-6-10-14-17

Verific	a bielle con	npresse	Portat	o dal calcestruz	ZZO	(Asw/s)min	Фstaffe
Cls	Fcd	Vu (KN)	Fctd	δ	Vc (KN)	(cm2/m)	10
Rck 30	15,79	810	1,15	1	118,01	3,14	157
Pass				Passo staffe			
0,8*d	33 cm	· · · · · · · · · · · · · · · · · · ·	Seff(m)	Vsu (KN)	<u> </u>	KN) min	
45,6	33	34,89	30	104,7	209,41	222,72	
Sezio		Vsu min (k	(N)	Asw/s [cm2/m]	S(cm)	12 Ф min (cm)	Effettiva
Pilastro 2	Sx Dx	-27,01	45,5	227,42	69,04	16,8	16
Sezio	one	Vsu min (k	(N)	Asw/s [cm2/m]	S(cm)	12 Ф min (cm)	Effettiva
Pilastro 6	Sx	6,99	62,5	312,39	50,26	•	16
i ilastio o	Dx	27,99	73	364,87	43,03	3 16,8	16
Sezio	one	Vsu min (k	(N)	Asw/s [cm2/m]	S(cm)	12 Φ min (cm)	Effettiva
Pilastro 10	Sx	26,99	72,5	362,37	43,33	16,8	16
i ilastio io	Dx	0,99	59,5	297,4	52,79	16,8	16
Sezio	one	Vsu min (k	(N)	Asw/s [cm2/m]	S(cm)	12 Φ min (cm)	Effettiva
Pilastro 14	Sx	-17,01	50,5	252,41	62,2	16,8	16
FildStiU 14	Dx	-20,01	49	244,91	64,1	16,8	16
Sezio	one 	Vsu min (k	(N)	Asw/s [cm2/m]	S(cm)	12 Φ min (cm)	Effettiva
Pilastro 17	Sx	-38,01	40	199,93	78,53	16,8	16
i ilastio ii	Dx	Taballa 16: Armatu	><	li trava di colo	$>\!<$	$>\!\!<$	$>\!<$

Tabella 46: Armature trasversali trave di colmo 2-6-10-14-17

Momenti resistenti

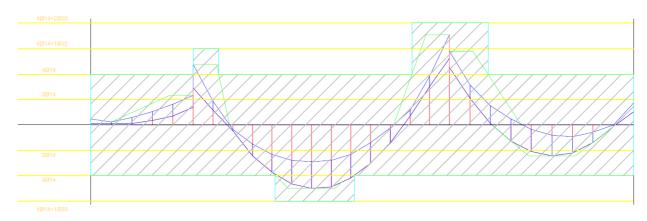


Fig. 40: Momenti resistenti - travi piano terra e primo piano

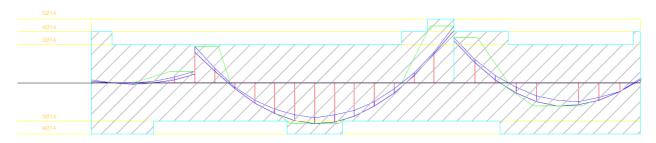


Fig. 41: Momenti resistenti - trave sottotetto

Dove non è presente la rappresentazione grafica del momento resistente il momento agente è notevolmente inferiore a quello resistente e quindi fuori scala.

Verifica delle sezioni

Tramite il software EC2 sono state effettuate le verifiche delle sezioni dimensionate (travatura principale):

Piano terra

Sezione	h (cm)	Md (KNm)	MRd (KNm)	M/MRd		Deformazioni		Verificata
Sezione	II (CIII)	IVIU (FUVIII)	WKU (KIVIII)	IVI/IVI KU	eps c sup	eps s inf	asse neutro	Verilicata
Pil 8	60	-8,6	-130,7	0,0658	-0,0100	0,0015	7,3 cm	SI
Pil 9	60	-162	-197,3	0,8212	-0,0100	0,0018	8,7 cm	SI
Pil 10	60	-218	-262,3	0,8312	-0,0100	0,0021	9,8 cm	SI
Pil 11	60	-52	-130,7	0,3979	-0,0100	0,0015	7,3 cm	SI
A	60	2,6	130,4	0,0199	0,0016	-0,0100	7,8 cm	SI
В	60	143	195,6	0,7312	0,0021	-0,0100	10,0 cm	SI
l c	60	74	131,7	0,5621	0,0016	-0,0100	7,9 cm	SI

Tabella 47: Riassunto verifiche travatura 8-9-10-11 - piano terra

Primo piano

Sezione	h (cm)	Md (KNm)	MRd (KNm)	M/MRd		Deformazioni		Verificata
Sezione	II (CIII)	WG (KWIII)	WKU (KIVIII)	W/W/KG	eps c sup	eps s inf	asse neutro	vernicala
Pil 8	60	-12	-130,4	0,09	-0,0100	0,0016	7,8 cm	SI
Pil 9	60	-142	-197,3	0,72	-0,0100	0,0018	8,7 cm	SI
Pil 10	60	-217	-230	0,94	-0,0100	0,0018	8,6 cm	SI
Pil 11	60	-53,0	-130,8	0,41	-0,0100	0,0014	6,9 cm	SI
Α	60		258,4	0	0,0028	-0,0100	12,3 cm	SI
В	60	155	195,6	0,79	0,0021	-0,0100	10,0 cm	SI
С	60	76	131,7	0,58	0,0016	-0,010	7,9 cm	SI

Tabella 48: Riassunto verifiche travatura 8-9-10-11 - primo piano

Sottotetto

Sezione	h (cm)	Md (KNm)	MRd (KNm)	M/MRd		Deformazioni		Verificata
Sezione	II (CIII)	INIU (FANIII)	WKU (KWIII)	IVI/IVI KU	eps c sup	eps s inf	asse neutro	Vernicala
Pil 8	60	-6,5	-129,9	0,05	-0,0100	0,0017	8,4 cm	SI
Pil 9	60	-92	-131,6	0,6990	-0,0100	0,0016	7,9 cm	SI
Pil 10	60	-141	-195,9	0,72	-0,0100	0,0021	10,0 cm	SI
Pil 11	60	-14	-129,9	0,11	0,0100	0,0017	8,4 cm	SI
Α	60	2,3	255,1	0,01	0,0033	-0,0100	14,1 cm	SI
В	60	98	131,2	0,7468	0,0017	-0,0100	8,5 cm	SI
С	60	55	129,9	0,42	0,0017	0,0017	8,4 cm	SI

Tabella 49: Riassunto verifiche travatura 8-9-10-11 - sottotetto

Copertura

Sezione	h (cm)	Md (KNm)	MRd (KNm) M/MRd ep			Verificata		
Sezione	II (CIII)	WG (KWIII)		mita (rami) mimta	W/W/Ku	eps c sup	eps s inf	asse neutro
Pil 8	24	-8,5	-35,5	0,24	-0,01	0	3,3 cm	SI
Pil 9	24	-36	-46,6	0,77	-0,01	0	3,8 cm	SI
Pil 10	24	-40	-47,1	0,85	-0,01	0	3,8 cm	SI
Pil 11	24	-18	-35,5	0,51	0,01	0	3,3 cm	SI
Α	24	2,3	35,5	0,0647	0	-0,0100	3,3 cm	SI
В	24	23	35,5	0,65	0,0019	-0,01	3,3 cm	SI
С	24	13	35,5	0,3659	0	-0,01	3,3 cm	SI

Tabella 50: Riassunto verifiche travatura 8-9-10-11 - copertura

Verifica allo stato limite ultimo sezione più sollecitata

Introduzione

La verifica allo SLU di una sezione di cls viene effettuata nel terzo stadio, ossia in quel tratto del diagramma curvatura-momento caratteristico della sezione nel quale si ha lo snervamento dei materiali e nel quale la fessurazione è oramai avvenuta.

Per il calcolo si fanno delle ipotesi semplificative, come la *perfetta aderenza* tra calcestruzzo e i ferri di armatura e la *conservazione delle sezioni piane*.

Nelle condizioni che si hanno in questo tratto i materiali che hanno superato il limite di snervamento e hanno quindi suparato il ramo elastico: si adottano quindi i diagrammi di calcolo forniti dalle normative. Per il calcestruzzo si adotta il diagramma "parabola rettangolo", nel quale si considera che il cls in questa situazione reagisca a sola compressione. Al contrario il diagramma di calcolo dell'acciaio considera il materiale agente in egual modo sia a trazione che a compressione.

Si hanno i seguenti valori caratteristici di deformazione:

Calcestruzzo
$$\epsilon_{cu} = 3.5 \cdot 10^{-3}$$
Acciaio
$$\epsilon_{sy} = 1.9 \cdot 10^{-3}$$

$$\epsilon_{su} = 10^{2}$$

Si possono quindi disegnare le regioni di rottura che per flessione semplice sono tre.

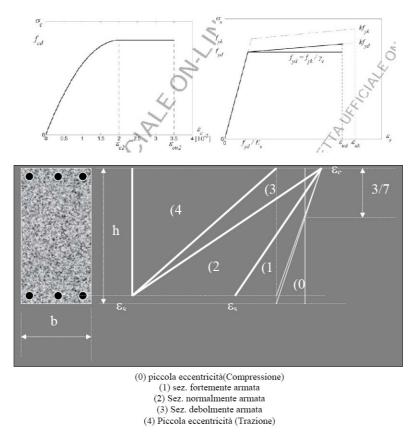


Fig. 42: Diagrammi di calcolo e regioni di rottura

- Regione 1: in questa regione c'è rottura dovuta al calcestruzzo che ha superato la sua deformazione limite. Questo tipo di rottura è da evitare, data la natura del colasso nel calcestruzzo che è di tipo fragile, non garantendo quindi un aumento di resistenza per successivo incrudimento.
- Regione 2: c'è sempre rottura per collasso del calcestruzzo, ma in questo caso anche l'acciaio delle armature supera la deformazione di snervamento.
- Regione 3: si ha collasso per superamento della deformazione limite delle armature, mentre il calcestruzzo non arriva ai valori limite.

Sulla linea di separazione di separazione tra le regioni 2 e 3 c'è una rottura particolare, definita "bilanciata" in quanto, come è possibile intuire graficamente, si è in presenza di un cedimento per il contemporaneo raggiungimento dei valori limite di resistenza di entrambi i materiali. Questa è la migliore situazione, quella auspicabile per avere una sezione ben progettata, al fine di sfruttare al meglio i materiali impiegati.

Per individuare le regioni di rottura si procede parametrizzando y_c ossia la posizione dell'asse neutro dal lembo compresso della sezione. Quindi per sapere come si romperà la sezione, per individuare la regione, va trovato l'asse neutro nel terzo stadio.

Per poter ricavare la posizione dell'asse neutro y_c si impone l'equilibrio a rotazione della sezione con:

$$\sigma_s = \epsilon_s E_s$$
 se $\epsilon_s < \epsilon_{sy}$

$$\sigma_s = f_{yd}$$
 se $\epsilon_s \ge \epsilon_{sy}$

Si calcola quindi il momento ultimo della sezione facendo l'equilibrio alla rotazione intorno al punto di applicazione della forza $F_{\rm c}$ in modo tale da poterla escludere dal calcolo in quanto, avendo braccio nullo il suo momento è nullo di conseguenza:

$$M_u = F_s(d-y) + F_s'(y-d')$$

Il valore di F_c, forza dovuta al calcestruzzo non è facilmente calcolabile, però calcolando l'area sottotesa dal diagramma parabola-rettangolo, si può considerare tale forza pari a:

$$F_{c} = \int \sigma_{c}(y) dA = F_{cl} + f_{c2} = (\frac{3}{7}y_{c}b f_{cd}) + (b \int \sigma_{c}(y) dy) = \frac{17}{21}b y_{c} f_{dc} = 0.81b y_{c} f_{dc}$$

che è detto "stress block".

Da ulteriori calcoli si è individuato che il centro di spinta di F_c è situato a $\overline{y} = 0.46 y_c$.

Parametrizzazione di Yc

Al fine di ricavare la posizione dell'asse neutro che consentirà di individuare le regioni di rottura della trave, si procede effettuando l'equilibrio alla traslazione della sezione:

$$Eq = F_c + \sum A_s \dot{\sigma}_s = \int \sigma_c(y) dA + \sum A_s \dot{\sigma}_s = 0$$

Si impone che la sezione venga a trovarsi in rottura bilanciata, quindi si ha sia il calcestruzzo con un $\epsilon_{cu}=3,5\cdot 10^{-3}$ e le armature inferiori snervate e precisamente con $\epsilon_{su}=10^2$.

L'ipotesi di sezione in rottura bilanciata semplifica il calcolo, in quanto è facilmente intuibile geometricamente come anche la armatura superiore sia snervata.

Si procede comunque alla verifica:

Si calcola sfruttando l'ipotesi di conservazione di sezioni piane la deformazione della fibra delle armature superiori compresse;

Graficamente la posizione dell'asse neutro è data da $y_c = d \frac{\epsilon_{cu}}{\epsilon_{cu} + \epsilon_{su}}$

Quindi la deformazione dell' armatura compressa è $\epsilon_s' = \epsilon_{cu} \frac{y_c - d}{y_c}$ superiore al valore di

snervamento dell'acciaio pari a $\epsilon_{sy} = \frac{f_{cd}}{E_s} = \frac{(450/1,15)}{205000} = 1,9110^{-3}$.

L'equazione di equilibro diviene quindi :

$$F_c + f_{yd} \dot{A}_s' - f_{yd} \dot{A}_s = 0$$

dove, con l'ipotesi dello stress block, si ottiene $0.8by_cf_{cd}+f_{vd}\dot{A}_s'-f_{vd}\dot{A}_s=0$.

Dividendo per $f_{cd} b d$

Si arriva a definire la percentuale meccanica di armatura:

$$\mu_s = \frac{f_{yd} A_s}{f_{cd} b d}$$

che rappresenta il rapporto tra la forza che l'acciaio e il calcestruzzo insieme riescono a sviluppare.

Si definisce anche la percentuale geometrica di armatura $\rho_s = \frac{A_s}{A_s}$

Si ha:
$$0.8 \frac{y_c}{d} + \mu_s' + \mu_s = 0.8 k + \mu_s' + \mu_s = 0$$

avendo definito
$$k = \frac{yc}{d} = \frac{\epsilon_{cu}}{\epsilon_{cu} + \epsilon_{su}} = \frac{3.5 \cdot 10^{-3}}{13.5 \cdot 10^{-3}} = 0.259$$

si ha quindi che, date le percentuali meccaniche di armatura, è possibile individuare la posizione dell'asse neutro e quindi anche la regione di rottura della sezione.

Nel caso della rottura bilanciata, infatti risulta un valore $\mu_s - \mu_s' = 0.21$.

Per la condizione che separa le regioni 2 e 1 si ha che $\mu_s - \mu_s' = 0.518$.

Per conoscere la regione di rottura della sezione allo SLU è quindi necessario solamente conoscere la percentuale meccanica delle armature.

Una volta individuata la regione di rottura è necessario calcolare il momento ultimo della sezione con la formula poco sopra riportata, la quale va adattata alle caratteristiche di ogni regione.

Sollecitazioni

Calcolo della regione di rottura per la sezione a destra del pilastro 10, appartenente alle travatura 8-9-10-11 del piano terra, caratterizzata dai seguenti dati:

Altezza	60	cm
Larghezza	30	cm
Copriferro	3	cm
Armatura compressa	1243	mm^2
Armatura tesa	615,4	mm^2
Momento agente	-218	kNm

Tabella 51: Riepilogo sezione pil. 10

Per i dati sulle resitenze dei materiali, si fa riferimento a quanto precedentemente detto nella relazione.

Calcolo percentuali di armatura

Armatura compressa : $\mu_s' = \frac{f_{yd} A_s'}{f_{cd} b d} = \frac{391*6,15}{17*30*57} = 0,082$

Armatura tesa: $\mu_s = \frac{f_{yd} A_s}{f_{cd} b d} = \frac{391 * 12,43}{17 * 30 * 57} = 0,167$

si è ottenuto un valore $\mu_s - \mu_s$ ' = 0,167-0,082=0,0845<0,21

avendo un valore molto al di sotto dei quello della "rottura bilanciata" siamo in regione 3. Si deve, a questo verificare se la armatura compressa abbia superato il li valore di ϵ_s $' \geq \epsilon_w$ e quindi è snervata.

Calcolo momento ultimo della sezione

Per risolvere il problema si fa una prima ipotesi di armatura superiore snervata, quindi si

avrà
$$K = \frac{\mu_s - \mu_s'}{0.8}$$
 e $\epsilon_s' = \epsilon_{su} \frac{y_c d'}{d - Yc} = \epsilon_{su} \frac{K - \delta}{1 - k}$ posti $k = \frac{y_d}{d}$ e $\delta = \frac{d'}{d}$.

Se è soddisfatta, il calcolo del momento ultimo è molto semplice in quanto risulta essere $\sigma_{s}' = f_{vd}$

quindi la formula del momento ultimo sarebbe $M_u = A_s f_{vd} d(1-0.4k) + A_s f_{vd} d$.

Nel qual caso la ipotesi fatta poco sopra non venga ad essere verificata bisogna procedere a impostare nuovamente l'equazione di equilibrio alla traslazione della sezione :

$$0.8bd k f_{cd} + A_s' \sigma_s' + A_s f_{yd} = 0$$

$$0.8k + \frac{\mu_s'}{f_{yd}} E_s \epsilon_{su} (\frac{k - \delta}{1 - k}) - \mu_s = 0$$

$$0.8k(1 - k) + \mu_s' \frac{\epsilon_{su}}{1 - k} (k - \delta) - \mu_s (1 - k) = 0$$

$$0.8k(1-k) + \mu_s' \frac{\epsilon_{su}}{\epsilon_{sy}}(k-\delta) - \mu_s(1-k) = 0$$

$$0.8 k^2 - (0.8 + \frac{\epsilon_{su}}{\epsilon_{sv}} \mu_s' + \mu_s) k + \frac{\epsilon_{su}}{\epsilon_{sv}} \mu_s' \delta + \mu_s = 0$$

Si ha $0 \le k \le 1$ quindi si determina k risolvendo la equazione di secondo grado. Con il valore trovato si ha nella formula del momento ultimo:

$$M_u = A_s f_{yd} d - 0.8 b d^2 k^2 f_{cd} 0.4 - A_s' E_s \epsilon_s' d'$$

Calcolo momento ultimo della sezione:

Ipotesi 1: acciaio in compressione snervato

$$K = \frac{\mu_s - \mu_s'}{0.8} = 0.1056 \text{ e} \quad \delta = \frac{d'}{d} = 0.0526$$

$$\epsilon_s' = \epsilon_{su} \frac{K - \delta}{1 - k} = 10^{-2} \frac{0.1056 - 0.0526}{1 - 0.1056} = 6 \cdot 10^{-4}$$

Si è quindi dimostrato che la ipotesi fatta è errata in quanto si è ottenuto un valore di $\epsilon_{sy} = 6 \cdot 10^{-4} < 1,9 \cdot 10^{-3}$ per cui la armatura superiore non è snervata.

Si procede quindi con la seconda ipotesi quella dell'acciaio dell'armatura compressa non spervato

Si ricava il valore di k trovado la soluzione della seguente equazione:

$$0.8 k^{2} - (0.8 + \frac{\epsilon_{su}}{\epsilon_{sv}} \mu_{s}' + \mu_{s}) k + \frac{\epsilon_{su}}{\epsilon_{sv}} \mu_{s}' \delta + \mu_{s} = 0$$

$$0.8k^2 - (0.8 + \frac{10^{-2}}{1.9 \cdot 10^{-3}} \cdot 0.082' + 0.167)k + \frac{10^{-2}}{1.9 \cdot 10^{-3}} \cdot 0.082 \cdot 0.0526 + 0.167 = 0$$

Risolvendo la equazione di secondo grado che segue, ottenuta avendo raggruppato tutti i termini presenti nella equazione precedente, si ha:

$$0.8k^2 - 1.39k + 0.190 = 0$$

Si hanno quindi le due soluzioni $k_1 = 0.1496$ e $k_2 = 1.588$, ma solo la $k_1 = 0.1496$ è accettabile in quanto si deve rispettare $0 \le k \le 1$ dal momento che l'asse neutro deve essere all'interno della sezione.

Si torna ora a verificare le deformazione dell'acciaio compresso introducedo il nuovo valore di k appena trovato con la equazione precedente:

$$\epsilon_s' = \epsilon_{su} \frac{K - \delta}{1 - k} = 10^{-2} \frac{0.1496 - 0.0526}{1 - 0.1496} = 1.14 \cdot 10^{-3} < 1.9 \cdot 10^{-3}$$

Si è quindi verificato che effettivamente l'armatura superiore non è snervata ed è caratterizzata da ϵ_s '=1,14·10⁻³

Procedendo con il calcolo del momento ultimo della sezione:

$$M_u = A_s f_{yd} d - 0.8 b d^2 k^2 f_{cd} 0.4 - A_s' E_s \epsilon_s' d'$$

 $M_u = 12.43 \cdot 39.13 \cdot 57 - 0.8 \cdot 30 \cdot 57^2 \cdot 0.1496^2 \cdot 1.7 \cdot 0.4 - 6.15 \cdot 20500 \cdot 1.14 \cdot 10^{-3} \cdot 3$
quindi $M_u = 26106 \text{kcm} = 261 \text{kNm}$

La sezione è quindi verificata allo stato limite ultimo in quanto il momento ultimo è pari a 261 KNm che è superiore al momento a cui è soggetta, pari a 218 KNm.

Si può facilemente calcolare la posizione dell'asse neutro proprio grazie alla definizione che è stata fatta del parametro $k = \frac{y_d}{d}$ quindi l'asse neutro è sito a 8,57 cm dal lembo compresso.

Annotazioni

Si noti che nei calcoli si sono sempre distinte le armature tra compresse e tese al posto di superiori e inferiori, scelta effettuata in quanto la sezione è sottoposta a un momento flettente negativo che tende quindi le fibre superiori. Per questo motivo nell'analizzare i calocoli effettuati è bene porre attenzione a quale fibra si sta facendo riferimento.

Verifica allo stato limite di esercizio sezione più sollecitata

Verifica allo stato limite ultimo nel rispetto dell'EC2 della trave più sollecitata.

Sollecitazioni

Per calcolare le sollecitazioni alle quali è sottoposta la struttura si è utilizzato il telaio tridimensionale modellato in SAP2000, applicando alle diverse azioni caratteristiche gli opportuni coefficienti parziali riportati nel D.M.14.09.05 al punto 5.1.2.2.2., sulla base della seguente relazione:

 $F_d = \gamma_g G_k + \psi_{11} \gamma_O Q_k$ (combinazione di tipo frequente) con:

Fd = azione di calcolo

 γ_G = coeff. parziale per i carichi permanenti; γ_G = 1 se il carico è a sfavore di sicurezza;

 γ_G = 0,9 se il carico è a favore di sicurezza ma per semplicità si considera sempre γ_G = 1;

 ψ_{11} = coeff. di combinazioni delle azioni variabili; ψ_{11} = 0,5 per abitazioni ed uffici;

 γ_Q = coeff. parziale per i carichi variabili; γ_Q = 1 se il carico è a sfavore di sicurezza; γ_G = 0 se il carico è a favore di sicurezza.

Dall'analisi si ha che la trave più sollecitata è la trave 9-10 di piano terra:

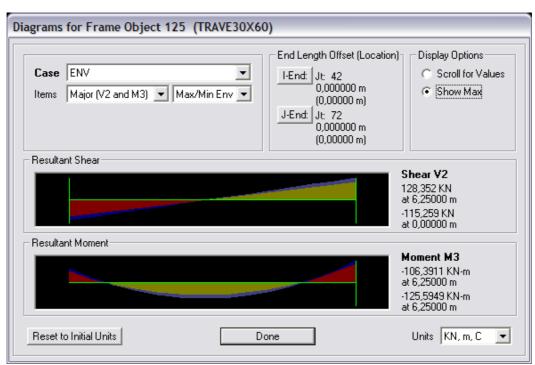


Fig. 43: Sollecitazione trave 9-10 primo piano con carichi per lo SLE

per le quali sussistono le seguenti caratteristiche nella sezione più sollecitata (appoggio P10):

 $M_{max} = -126 \text{ KNm}$

Sezione: larghezza 30cm, altezza 60 cm

Armature: $\mathbf{4} \Phi \mathbf{14} + \mathbf{2} \Phi \mathbf{20}$ superiore, $\mathbf{4} \Phi \mathbf{14}$ inferiore

Calcoli in MATHCAD:

STATI LIMITE DI ESERCIZIO

Verifica allo stato limite di apertura delle lesioni

1) Dati di calcolo

Combinazione di carico quasi permanente

Dati trave:

Larghezza: Copriferro: Armatura superiore: Armatura inferiore: $B := 30 \text{ cm} \qquad dp := 3 \text{ cm} \qquad As' = 4 \phi 14 + 2 \phi 20 \qquad As' = 4 \phi 14$ $Altezza: \qquad Asp := 2 \cdot \left[\pi \cdot \left(\frac{2}{2} \right)^2 \right] + 4 \cdot \left[\pi \cdot \left(\frac{1.4}{2} \right)^2 \right] \qquad As := 4 \cdot \left[\pi \cdot \left(\frac{1.4}{2} \right)^2 \right]$ $Asp = 12.441 \text{ cm}^2 \qquad As = 6.158 \text{ cm}^2$

Proprietà dei materiali:

Calcestruzzo di classe C25/30, quindi: fck := 25 MPa Rck := 30 MPa E $c := 11000 \cdot \sqrt[3]{\frac{Rck}{0.7}}$ $\alpha cc := 0.85 \text{ } \gamma c := 1.5 \text{ } fcd := \alpha cc \cdot \frac{fck}{0.7}$ fcd = 14.167 MPa E $c := 3.849 \times 10^4$ MPa

Resistenza media a trazione: $fctm := 0.3 \cdot \sqrt[3]{Rck^2}$ fctm = 2.896 MPa

Acciaio: fyk := 450 MPa quindi $fyd := \frac{fyk}{1.15}$ fyd = 391.304 MPa con Es := 205000 MPa

Dati aggiuntivi:

Limite massimo dell'ampiezza della lesione: $w_max := 0.3 \text{ mm}$

La deformazione massima deve essere 1/500 della luce della trave.

Dall'analisi delle sollecitazioni allo SLE si è ricavato il seguente momento di calcolo: Md := 126 KNm

3) Caratteristiche della sezione

1° stadio:

La sezione è considerata interamente reagente e si trascura la presenza dell'acciaio (si considera la "gross section"), pertanto essendo rettangolare la posizione dell'asse neutro coincide con il baricentro della sezione, ovvero per metà altezza.

$$yg1s := \frac{Hs}{2}$$
 $yg1s = 30$ cm

Il momento d'inerzia è quello di un rettangolo rispetto all'asse passante per il suo baricentro, ovvero:

$$J1s := \frac{1}{12} \cdot B \cdot Hs^3$$
 $J1s = 5.4 \times 10^5$ cm⁴

2° stadio:

Si considera ora la sezione parzializzata in quanto il calcestruzzo non reagisce a trazione. Va trovato il baricentro considerando ora il coefficente di omogeneizzazione n posto pari a 6 (si trascura la deformazione viscosa).

Calcoliamo quindi l'asse neutro come il rapporto tra il momento statico della sezione parzializzata (rispetto ad asse passante per il bordo superiore della sezione) e la sua area:

n := 6

$$yg = \frac{B \cdot \frac{yg^2}{2} + n \cdot [Asp \cdot dp + As \cdot (Hs - dp)]}{B \cdot yg + n \cdot (Asp + As)} \begin{vmatrix} solve, yg \\ float, 4 \end{vmatrix} \leftarrow \begin{pmatrix} -16.73 \\ 9.286 \end{vmatrix}$$

$$yg2s := 17.69 \text{ cm}$$

Il momento di inerzia della sezione omogeneizzata è quindi:

$$J2s := \frac{1}{3} \cdot B \cdot yg2s^{3} + n \cdot \left[(Hs - dp - yg2s)^{2} \cdot As + (yg2s - dp)^{2} \cdot Asp \right] \qquad \qquad J2s = 1.286 \times 10^{5} \text{ cm}^{4}$$

4) Stato limite di apertura delle fessure

La verifica dell'ampiezza delle fessure secondo l'EC2 si effettua valutando l'ampiezza massima delle lesioni Wk che deve risultare minore di Wmax=0.3 mm (classe di esposizione XC3, condizione di carico di tipo quasi permanente – vedi Tab 7.1N).

 $Wk = \beta \cdot srm \cdot \epsilon sm$ con:

 $\beta := 1.7$ (fessurazione indotta da carichi)

srm è la distanza media finale tra le fessure, considerando:

 $\phi := 20 \text{ mm}$ k1 := 0.8 (barre ad aderenza migliorata) k2 := 0.5 (trazione pura)

pr : la percentuale geometrica d'armatura rispetto alla così detta Area efficace di cls, ovvero:

Aeff := B·2.5·dp
$$\rho r$$
:= $\frac{As}{Aeff}$ $\rho r = 0.027$

Quindi:

$$srm := 50 + 0.25 \cdot k1 \cdot k2 \cdot \frac{\phi}{\rho r}$$
 $srm = 123.081 \text{ mm}$

ɛsm è la deformazione media dell'acciaio, calcolabile utilizzando le seguenti tensioni:

$$\sigma s := n \cdot \frac{Md}{J2s} \cdot (Hs - dp - yg2s) \cdot 1000 \qquad \sigma s = 231.169 \quad MPa$$

$$\label{eq:Mfess} \mbox{Mfess} := \mbox{fctm} \cdot \frac{\mbox{J1s}}{\mbox{Hs-dp-yg1s}} \qquad \qquad \mbox{Mfess} = 5.793 \times \ \mbox{10}^{4} \ \mbox{Nm}$$

$$\sigma sr := n \cdot \frac{Mfess}{J2s} \cdot (Hs - dp - yg1s)$$
 $\sigma sr = 72.999$ MPa

e considerando:

 $\beta 1 := 1$ (barre ad aderenza migliorata) $\beta 2 := 1$ (carico di breve durata, condizione più gravosa)

Quindi:

$$\epsilon sm := \frac{\sigma s}{Es} \left[1 - \beta 1 \cdot \beta 2 \cdot \left(\frac{\sigma sr}{\sigma s} \right)^{2} \right] \qquad \epsilon sm = 1.015 \times 10^{-3}$$

Ne consegue che il valore caratteristico di apertura delle lesioni è pari a

Wk :=
$$\beta \cdot \text{srm} \cdot \epsilon \text{sm}$$
 Wk = 0.212 mm < 0,3 mm => VERIFICATO

5) Armatura minima

L'EC2 prescrive che oltre alla verifica dell'ampiezza della fessura si disponga nella trave un quantitativo minimo d'armatura (per evitare pericolosi snervamenti in fase di esercizio) valutabile con la relazione seguente:

$$As_{min} = \frac{kc \cdot k \cdot fcteff \cdot Act}{\sigma sa}$$
 con:

$$kc := 0.4$$
 (flessione) $k := 1$ (a favore di sicurezza) fcteff := 3 MPa

Act é l'area del calcestruzzo nella zona tesa appena prima della fessurazione. In questo caso, essendo l'asse neutro dello stadio 1 coincidente con l'asse baricentrico della sezione, sarà pari a metà area totale:

$$Act := \frac{Hs B}{2} \qquad Act = 900 \quad cm^2$$

σsa è la massima tensione ammessa nell'armatura subito dopo la formazione della fessura, pari a:

$$\sigma sa := 0.9 \; fyk \qquad \sigma sa = 405 \quad MPa$$

Quindi:

$$Asmin := \frac{kc \cdot k \cdot fcteff \cdot Act}{\sigma sa} \qquad Asmin = 2.667 \ cm^2 \qquad Asmin < Asp = 1 \implies VERIFICATO$$

Pilastri

Modelli di calcolo

Nei pilastri soggetti a compressione centrata o eccentrica deve essere disposta un'armatura longitudinale di sezione non minore a:

$$A_{fmin} \ge 0.15 N_{sd} / f_{vd}$$

con N_{sd} = forza normale di esercizio per combinazione di carico rara.

L'armatura totale del pilastro deve avere sezione compresa tra:

$$0,3\% A_b \ge A_f \ge 6\% A_b$$

con Ab = area della sezione in calcestruzzo.

Il numero minimo di ferri per i pilastri di sezione quadrata o rettangolare è 4.

Il diametro delle barre longitudinali non deve essere inferiore ai 12 mm.

Deve essere prevista una staffatura posta ad interasse non maggiore di:

$$s_{min} = min(15 \phi_1; 25 cm)$$

con Φ_1 = diametro del più piccolo dei ferri longitudinali adottati per armare il pilastro.

Per semplicità costruttiva l'armatura è stata progettata simmetrica sui due lati più sollecitati.

Si sono evitati interassi tra le barre longitudinali superiori a 30 cm anche lungo i lati meno sollecitati del pilastro.

Per questioni pratiche i ferri dei pilastri sono stati interrotti in corrispondenza di ogni piano, al di sopra dell'impalcato, lasciando i "ferri di attesa" al di sopra dell'ultimo getto per una lunghezza di circa 1 metro.

Si è cercato di distribuire le armature omogeneamente nella sezione per evitare problemi in fase costruttiva e per fornire una maggiore resistenza alle sollecitazioni non considerate in fase di progetto (momenti parassiti, eccentricità, piombo errato in fase costruttiva) utilizzando nelle sezioni più sollecitate dei ferri di parete.

Armature

E' stato effettuato il dimensionamento del pilastro più sollecitato (P10) per ogni piano, soggetto nelle sezioni alla base e alla sommità alle seguenti sollecitazioni:

Sezione	M _{max} (KNm)	N _{max} (KN)	N _{min} (KN)	V (KN)
Base plinto	13	1490	1300	48
Sommità plinto	35	1490	1300	48
Base piano terra	18	1003	886	13
Sommità piano terra	21	1003	886	13
Base primo piano	24	515	490	14
Sommità primo piano	18	515	490	14
Base sottotetto	13	188	180	10
Sommità sottotetto	12	188	180	10

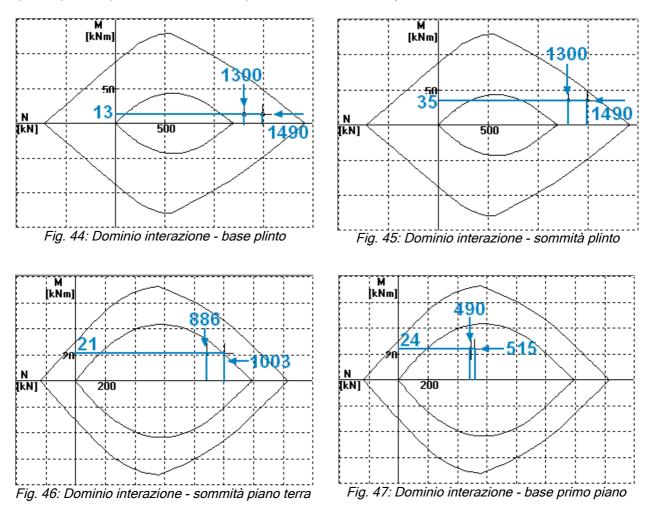
Tabella 52: Sollecitazioni di calcolo del pilastro P10

La sezione inizialmente scelta si è rivelata sovradimensionata. Si è adottata quindi la sezione **30cm** x **30cm** con le seguenti armature:

Coriono	A _{fmin} (mm ²)	Λ (mm²)	٨	Valori	EC2	Minima	Ф		Area
Sezione	A _{fmin} (IIIII)	Λ _{f min} (IIIII)	A _{fmax}	Max	Min	necessaria	14	20	effettiva
Base plinto	571,17	270	5400	530	290	530	2	1	621,72
Sommità plinto	571,17	270	5400	770	530	770	6		923,16
Base piano terra	384,48	270	5400	0	0	270	2		307,72
Sommità piano terra	384,48	270	5400	0	0	270	2		307,72
Base primo piano	197,42	270	5400	0	0	270	2		307,72
Sommità primo piano	197,42	270	5400	0	0	270	2		307,72
Base sottotetto	72,07	270	5400	0	0	270	2		307,72
Sommità sottotetto	72,07	270	5400	0	0	270	2		307,72

Tabella 53: Riepilogo armature longitudinali per il pilastro P10

Data l'esigua lunghezza del pilastro dal plinto fino al piano terra, si adotta direttamente l'armatura della sommità plinto.


Per le staffe si sono adottati ferri Φ 8 (A_f = 50,24 mm²).

Sezione	Bielle	IV	lin	Passo adottato	A avv/a	Taglio	Taglio
Sezione	compresse	15 Ф	25cm	(cm)	Asw/s	armatura	calcestruzzo
Base plinto	607,5	21	25	20	502,4	47,73	57,83
Sommità plinto	607,5	21	25	20	502,4	47,73	57,83
Base piano terra	607,5	21	25	20	502,4	47,73	57,83
Sommità piano terra	607,5	21	25	20	502,4	47,73	57,83
Base primo piano	607,5	21	25	20	502,4	47,73	57,83
Sommità primo piano	607,5	21	25	20	502,4	47,73	57,83
Base sottotetto	607,5	21	25	20	502,4	47,73	57,83
Sommità sottotetto	607,5	21	25	20	502,4	47,73	57,83

Tabella 54: Riepilogo staffe (i valori dei tagli resistenti sono in KN)

Verifiche a pressoflessione

Tramite il software di calcolo EC2 sono state effettuate le seguenti verifiche a pressoflessione per le sezioni più sollecitate del pilastro (la curva interna rappresenta quella per la quale la sezione è sprovvista di armatura):

Tutte le sezioni risultano verificate.

Scala

Gradini

Modello

Dall'analisi dei carichi precedentemente effettuata è possibile determinare l'armatura necessaria per i gradini i quali, considerando il vincolo d'incastro monolatero, sono considerati come mensole indipendenti soggette ad un carico uniformemente distribuito più uno concentrato in punta (parapetto).

Il gradino quindi, comportandosi come mensola, è soggetto a momento flettente negativo; le fibre inferiori compresse ricardono all'interno dello spessore della soletta di collegamento.

Data la geometria dei gradini si nota che l'asse di sollecitazione del momento non coincide con quello principale di inerzia della sezione e che, quindi, si ha flessione deviata.

Tuttavia, data la presenza della soletta di collegamento, la scala può inflettersi essenzialmente ruotando intorno ad un asse che tende ad avere la stessa inclinazione della rampa. Ne consegue che tutto il problema si può semplificare progettando e verificando la sezione per la componente del momento secondo l'inclinazione della scala (angolo Φ).

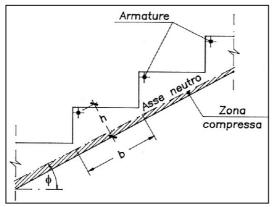


Fig. 48: Modello di calcolo armatura gradino

Armatura

Le armature necessarie per il gradino sono:

- armatura principale dimensionata con lo schema della mensola
- armatura costruttiva realizzata con barre Φ8
- armatura di ripartizione della soletta con barre Φ10

Essendo vista e progettata come una soletta in c.a. può non essere armata a taglio; le staffe quindi hanno solo una funzione costruttiva e vengono disposte a distanza di **25 cm**, come l'armatura di ripartizione.

Per l'armatura principale si ha:

$$M_{max} = \frac{(G_d + Q_d) \cdot l_0^2}{2} + F_d \cdot l_0$$
; $M_d = M_{max} \cdot \cos(\phi)$

Armatura minima necessaria: $A_f = max(A_{fl}; A_{f2})$ con:

$$A_{fl} = \frac{M_d}{0.9 \cdot f_{vd} \cdot h}$$
; $Af_2 = 0.15 \% A_c$

Graficamente si è determinato h = 0.15 m; dai dati precedenti dell'analisi dei carichi si ha: $M_{max} = 2.23$ KNm, quindi $M_d = 1.92$ KNm.

 $A_{f1} = 36,44 \text{ mm}^2$; $A_{f2} = 57,14 \text{ mm}^2$, quindi $A_{fmin} = 57,14 \text{ mm}^2$.

Si è adottato per ogni gradino $1 \Phi 10 (A_f = 78,5 \text{ mm}^2)$.

Pianerottolo

Il pianerottolo intermedio è modellabile come una piastra incastrata su tre lati e libera su quello lungo nel quale si innestano le rampe.

Sfruttando le soluzioni notevoli per piastre presenti in letteratura si può passare ad un'analisi monodimensionale del problema per poter calcolare le barre in entrambe le direzioni:

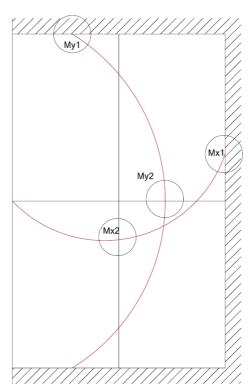


Fig. 49: Diagramma dei momenti per l'analisi monodimensionale della piastra

I momenti di calcolo pertanto sono:

$$M_{yl} = -\frac{q b^2}{\alpha_{yl}}$$
 $M_{y2} = \frac{q b^2}{\alpha_y}$ $M_{xl} = -\frac{q a^2}{\alpha_{xl}}$ $M_{x2} = \frac{q a^2}{\alpha_x}$

Lunghezza b = 2,1 m; larghezza a = 1,1 m, quindi b/a = 1,91 e α_x = 18,7, α_{x1} = 9,09,

Corso di "Tecnica delle costruzioni" - Prof. F. Paolacci - Anno 2006/2007 - Relazione tecnica progetto - Pag. 78 di 93

$$\alpha_v = 46.3$$
, $\alpha_{v1} = 12.79$.

Si ha quindi, dato $q = 9.1 + 6 = 15.1 \text{ KN/m}^2 \text{ e h} = 20 - 3 = 17 \text{ cm}$:

 $M_{y1} = -5,21 \text{ KNm / m}$ $M_{y2} = 1,44 \text{ KNm / m}$ $M_{x1} = -2,01 \text{ KNm / m}$ $M_{x2} = 0.98 \text{ KNm / m}$

Armatura minima necessaria: $A_f = max(A_{f1}; A_{f2})$ con:

$$A_{fl} = \frac{M_d}{0.9 \cdot f_{vd} \cdot h}$$
; $Af_2 = 0.15 \% A_c$

I momenti sono tali che è sempre più gravosa la prescrizione A_{f2} = 255 mm²/m in entrambi i sensi. Distribuendo l'armatura lungo tutto il pianerottolo si hanno, se si considerano ferri Φ 10 (A_f = 78,5 mm²), 7 ferri nel lato lungo e 4 in quello corto.

Trave a ginocchio

Modello di calcolo

Il progetto e la verifica dell'armatura longitudinale a flessione sono eseguiti come nel caso delle altre travi.

Il progetto delle staffe invece considera sia il taglio che la sollecitazione torcente.

Taglio

Il calcolo dell'armatura richiesta è effettuato considerando il valore più alto tra l'area minima prevista dalla normativa e il valore del taglio massimo ponendo V_{cu} = 0, quindi:

$$\bullet \qquad V_{sd} = V_d$$

$$\bullet \qquad \frac{A_{swd}}{s} = \frac{V_{sd}}{0.9 \, d \, f_{yd}}$$

•
$$\frac{A_{swV}}{s} = max(\frac{A_{swmin}}{s}; \frac{A_{swd}}{s})$$

Torsione

Va calcolato lo spessore della sezione cava equivalente:

$$\hat{h} = \frac{(b-2d')}{6}$$

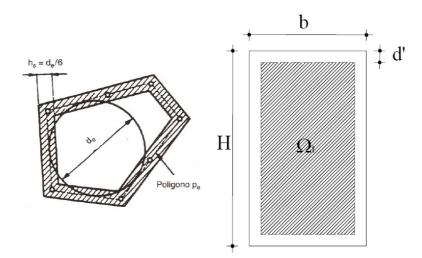


Fig. 50: Schema della sezione reagente di calcestruzzo

Poi va calcolata l'area e il perimetro del nucleo di calcestruzzo:

$$\Omega = (b-2d')(H-2d')$$

$$p=2[(b-2d')+(H-2d')]$$

Quindi va calcolata l'area delle staffe e dei ferri longitudinali necessari:

$$A_{sl} = \frac{M_t p}{2 \Omega f_{vd}} \qquad \frac{A_{swT}}{s} = \frac{M_t}{2 \Omega f_{vd}}$$

Staffatura totale

Per verificare il comportamento a traliccio (taglio e torsione) e in particolare la resistenza delle bielle compresse (con f_{cd} ridotto del 50%) si deve controllare che, dati:

$$V_u = 0.3 \, b \, d \, f_{cd}$$
 e $T_u = 0.5 \, \Omega \, f_{cd} \, \hat{h}$

si abbia

$$\frac{T_d}{T_u} + \frac{V_d}{V_u} \le 1$$

L'area totale delle staffe, dato che quelle a taglio lavorano a due braccia mentre quelle per la torsione solo con una, sarà:

$$\frac{A_{swTOT}}{s} = \frac{A_{swV}}{s} + 2\frac{A_{swT}}{s}$$

A causa della presenza della torsione va controllato che:

$$\frac{A_{swTOT}}{s} \ge \frac{0.15 \, b}{100}$$
 $s \ge min(0.8 \, d; 20 \, cm; \frac{p}{8})$

Dimensionamenti

Per poter effettuare il dimensionamento della trave a ginocchio è stato necessario considerare anche il dimensionamento delle travi nelle quali si innestano, ovvero la trave 5-9 del piano terra e la 4-8 del primo piano.

Prima rampa:

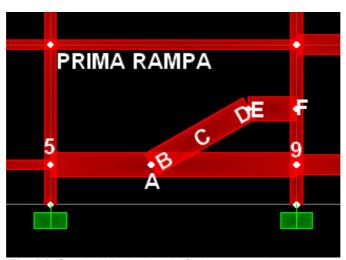
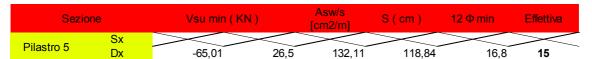


Fig. 51: Sezioni di calcolo di riferimento - prima rampa


Trave piano terra 5-9 (b=30cm; h = 60cm); Mt = 11 KNm

Sezi	ione	Md	Td	As md	As Td	As minima	14	20	As effettiva	M resisitente
D:1.5	Sup	-51		254,26		540	4	0	615,44	-123,45
Pil 5	Inf		53		0	135	2	0	307,72	
Dil o	Sup	-54		269,22		540	4	0	615,44	-123,45
Pil 9	Inf		47		120,2	135	2	0	307,72	
	Sup					0	2	0	307,72	
Α	Inf	49	10	244.29	25.58	540	4	0	615.44	123.45

Tabella 55: Armature longitudinali trave piano terra 5-9

	Verifica bie	lle compresse		Porta	to dal calces	struzzo	(Asw/s)min	Φ staffe
Cls	Fcd	Vu (KN)	Vd agente	Fctd	δ	Vc (KN)	(cm2/m)	10
Rck 30	391	872,1	0	1,15	1	118,01	3,15	157

Pa	SSO			Passo staffe		
0,8*d	33 cm	S (m)	S eff (m)	Vsu (KN)	V rd (k	(N) min
45,6	33	34,89	19,5	161,5	209,94	222,98

Sezior	ne	Vsu min (KN)		Asw/s [cm2/m]	S(cm)	12 Ф min	Effettiva
Dilaatra 0	Sx	-71,01	23,5	11,72	1340,07	16,8	15
Pilastro 9	Dx				-		-

Sezione	Vsu min (KN)		Asw/s [cm2/m]	S(cm)	12 Ф min	Effettiva
Α	-108.01	5	2.49	6298.31	16.8	15

Tabella 56: Calcolo armature a taglio trave piano terra 5-9

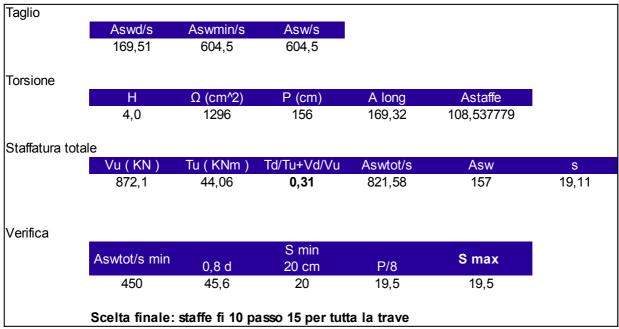


Tabella 57: Riepilogo armatura trasversale considerando la torsione - trave 5-9 piano terra

Trave inclinata B-C-D (b=30cm; h=50cm); Mt = 14 KNm

Sez	zione	Md	Td	As md	As Td	As minima	14	20	As effettiva	M resisitente
_	Sup					0	2	0	307,72	
В	Inf	4	23	19,94	0	450	4	0	615,44	101,79
_	Sup					0	2	0	307,72	
C	Inf	20	4	99,71	0	450	4	0	615,44	101,79
	Sup					0	2	0	307,72	
U	Inf	9	17	44,87	43,48	450	4	0	615,44	101,79

Tabella 58: Armature longitudinali trave inclinata B-C-D

	Verifica biell	e compresse		Portat	o dal calcestru	IZZO	(Asw/s)min	Φstaf
Cls	Fcd	Vu (KN)	√d agente	Fctd	ō	Vc (KN)	(cm2/m)	10
Rck 30	391	719,1	0	1,15	1	97,31	2,6	157
Dee				Decea eteffe			I	
Pas 0,8*d	33 cm	C (m)	C off (m)	Passo staffe	\/ rd / /	M \ min		
	33	· ,	S eff (m) 17	Vsu (KN)	V rd (KI	,		
37,6	33	34,89	17	152,75	173,11	183,86		
Sezi	ione	Vsu min (KN)	Asw/s [cm2/m]	S(cm)	12 Ф min	Effettiva	
В	Sx Dx	-74,31	11.5	60.53	225.0	16.0	15	
	DX	-74,31	11,5	69,53	225,8	16,8	15	
Sezi	ione	Vsu min (KN)	Asw/s [cm2/m]	S (cm)	12 Ф min	Effettiva	
С	Sx	-93,31	2	1,21	12983,35	16,8	15	
C	Dx		><	><		> <	> <	
	•			Asw/s	0 /	10 + :	E# W	
Sezi	ione	Vsu min (KN)	[cm2/m]	S (cm)	12 Ф min	Effettiva	
D		-80,31	8,5	5,14	3054,91	16,8	15	
		Tabella 59: Ca	lcolo arma	ature a taglio	- trave inclii	nata B-C-D		

Corso di "Tecnica delle costruzioni" - Prof. F. Paolacci - Anno 2006/2007 - Relazione tecnica progetto - Pag. 82 di 93

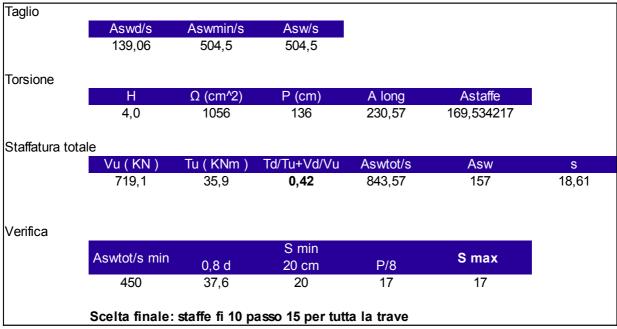


Tabella 60: Riepilogo armatura trasversale considerando la torsione - trave inclinata B-C-D

Trave di pianerottolo E-F (b=30cm; h=50cm); Mt = 5 KNm

1	Sezi	ione	Md	Td	As md	As Td	As minima	14	20	As effettiva	M resistente
1		Sup					0	2	0	307,72	
1	_	Inf	13	10	64,81	0	450	4	0	615,44	101,79
ı	_	Sup	-10		49,85		450	4	0	615,44	
1		Inf		28		71,61	71,61	2	0	307,72	-101,79

Tabella 61: Armature longitudinali trave di pianerottolo E-F

	Verifica biell	e compresse		Portat	o dal calcestru	IZZO	(Asw/s)min	Φstaff
Cls	Fcd	Vu (KN)	Vd agente	Fctd	ō	Vc (KN)	(cm2/m)	10
Rck 30	391	872,1	0	1,15	1	118,01	3,15	157
Pas	SO			Passo staffe				
0,8*d	33 cm	S(m)	S eff (m)	Vsu (KN)	V rd (Kl	N) min		
45,6	33	34,89	19,5	161,5	209,94	222,98		
Sez		Vsu mir	n (KN)	Asw/s [cm2/m]	S (cm)	12 Φ min	Effettiva	
E	Sx		>		><	>		
_	Dx	-108,01	ţ	5 24,93	629,83	16,8	15	
Sez	ione	Vsu mir	n (KN)	Asw/s [cm2/m]	S (cm)	12 Ф min	Effettiva	
F	Sx	-90,01	14	4 69,8	224,94	16,8	15	
Г	Dx		\			>	\	

Tabella 62: Calcolo armature a taglio - trave di pianerottolo E-F

Taglio						
	Aswd/s	Aswmin/s	Asw/s			
	169,29	504,5	504,5			
Torsione						
	Н	Ω (cm ²)	P (cm)	A long	Astaffe	
	4,0	1056	136	82,35	60,547935	
Staffatura tota	ale					
	Vu (KN)	Tu (KNm)	Td/Tu+Vd/Vu	Aswtot/s	Asw	S
	719,1	35,9	0,18	625,6	157	25,1
Verifica						
	Aswtot/s min	0,8 d	S min 20 cm	P/8	S max	
	450	37,6	20	17	17	
	Scelta finale:	staffe fi 10 p	asso 15 per tutt	a la trave		

Tabella 63: Riepilogo armatura trasversale considerando la torsione - trave di pianerottolo E-F

Pianerottolo:

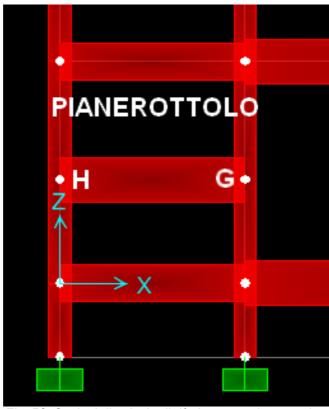


Fig. 52: Sezioni di calcolo di riferimento - pianerottolo

Sez	zione	Md	Td	As md	As Td	As minima	14	20	As effettiva	M resistente
_	Sup					0	2	0	307,72	
G	Inf	31	2	154,55	0	450	4	0	615,44	101,79
	Sup	-22		109,68		450	4	0	615,44	
н	Inf		40		102,3	102,3	2	0	307,72	-101,79

Tabella 64: Armature longitudinali - trave di pianerottolo G-H

	Verifica biel	le compresse		Porta	to dal calcest	ruzzo	(Asw/s)min	Фstaffe
Cls	Fcd	Vu (KN)	Vd agente	Fctd	.δ	Vc (KN)	(cm2/m)	10
Rck 30	391	872,1	0	1,15	1	118,01	3,15	157
							_	
Pas	SSO SSO			Passo staffe				
0,8*d	33 cm	S (m)	S eff (m)	Vsu (KN)	V rd (KN) min		
45,6	33	34,89	19,5	161,5	209,94	222,98		

	Sezione	Vsu min (KN)		Asw/s :m2/m]	S (cm)	12 Ф min	Effettiva
	Sx			~	> < <	> <	> <
G	Dx	-116,01	1	4,99	3149,15	16,8	15

Se	ezione	Vsu min (KN)		Asw/s [cm2/m]	S(cm)	12 Ф min	Effettiva
- 11	Sx	-78,01	20	99,71	157,46	16,8	15
п	Dx			>	\rightarrow	\rightarrow	>

Tabella 65: Calcolo armature a taglio - trave di pianerottolo G-H

Taglio										
	Aswd/s	Aswmin/s	Asw/s							
	241,85	504,5	504,5							
Torsione										
	Н	Ω (cm ²)	P (cm)	A long	Astaffe					
	4,0	1056	136	82,35	60,547935	_				
Staffatura tota	le									
	Vu (KN)	Tu (KNm)	Td/Tu+Vd/Vu	Aswtot/s	Asw	s				
	719,1	35,9	0,19	625,6	157	25,1				
Verifica						_				
	Aswtot/s min	0,8 d	S min 20 cm	P/8	S max					
	450	37,6	20	17	17	_				
Scelta finale: staffe fi 10 passo 15 per tutta la trave										

Tabella 66: Riepilogo armatura trasversale considerando la torsione - trave di pianerottolo G-H

Seconda rampa:

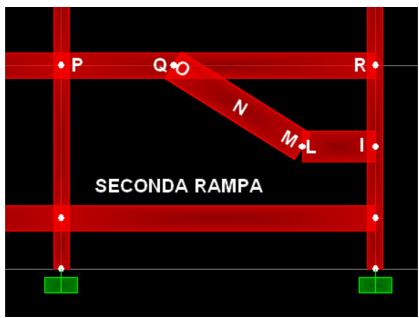


Fig. 53: Sezioni di calcolo - seconda rampa

Trave di pianerottolo L-I (b=30cm; h=50cm); Mt = 10 KNm

Ì	Sez	ione	Md	Td	As md	As Td	As minima	14	20	As effettiva	M resistente
		Sup					0	2	0	307,72	
		Inf	22	34	109,68	0	450	4	0	615,44	101,79
		Sup	-43		214,38		450	4	0	615,44	
		Inf		56		143,22	143,22	2	0	307,72	-101,79

Tabella 67: Armature longitudinali - trave di pianerottolo L-l

	Verifica biel	le compresse		Portat	o dal calcestri	JZZO	(Asw/s)min	Φstaf
Cls	Fcd	Vu (KN)	Vd agente	Fctd	ō	Vc (KN)	(cm2/m)	10
Rck 30	391	872,1	0	1,15	1	118,01	3,15	157
Pas	SO			Passo staffe				
0,8*d	33 cm	S (m)	S eff (m)	Vsu (KN)	V rd (K	N) min		
45,6	33	34,89	19,5	161,5	209,94	222,98		
Sezi		Vsu mir	ı (KN)	Asw/s [cm2/m]	S(cm)	12 Φ min	Effettiva	
L	Sx Dx	-84,01	17	84,75	185,24	16,8	15	
Sezi	one	Vsu mir	ı (KN)	Asw/s [cm2/m]	S(cm)	12 Φ min	Effettiva	
I	Sx Dx	-62,01	28	139,59	112,47	16,8	15	

Tabella 68: Calcolo armature a taglio - trave di pianerottolo L-l

Taglio										
	Aswd/s	Aswmin/s	Asw/s							
	338,59	504,5	504,5							
Torsione										
	H	Ω (cm ²)	P (cm)	A long	Astaffe					
	4,0	1056	136	164,69	121,095869					
Staffatura tota	ale									
	Vu (KN)	Tu (KNm)	Td/Tu+Vd/Vu	Aswtot/s	Asw	S				
	719,1	35,9	0,36	746,69	157	21,03				
Verifica										
			S min		_					
	Aswtot/s min	0,8 d	20 cm	P/8	S max					
	450	37,6	20	17	17					
Scelta finale: staffe fi 10 passo 15 per tutta la trave										

Tabella 69: Riepilogo armatura trasversale considerando la torsione - trave di pianerottolo L-l

Trave inclinata M-N-O (b=30; h=50); Mt = 10 KNm

Sez	ione	Md	Td	As md	As Td	As minima	14	20	As effettiva	M resistente
	Sup					0	2	0	307,72	
U	Inf	35	15	174,49	0	450	4	0	615,44	101,79
NI NI	Sup					0	2	0	307,72	
IN	Inf	42	6	209,39	0	450	4	0	615,44	101,79
	Sup					0	2	0	307,72	
M	Inf	22	24	109,68	61,38	450	4	0	615,44	101,79

Tabella 70: Armature longitudinali - Trave inclinata M-N-O

	Verifica biel	le compresse		Portato	o dal calces	(Asw/s)min	Φstaffe	
Cls	Fcd	Vu (KN)	Vd agente	Fctd	δ	Vc (KN)	(cm2/m)	10
Rck 30	391	872,1	0	1,15	1	118,01	3,15	157
Pas	so			Passo staffe				
0,8*d	0,8*d 33 cm S (m) S eff (m)		Vsu (KN)	V rd	(KN) min			

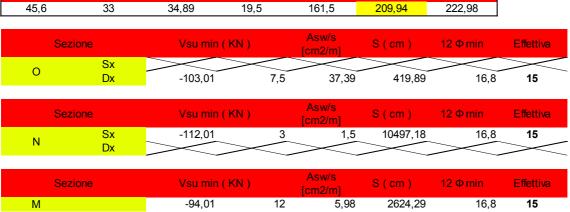


Tabella 71: Calcolo armature a taglio - Trave inclinata M-N-O

Taglio										
	Aswd/s	Aswmin/s	Asw/s							
	145,11	504,5	504,5							
Torsione										
	Н	Ω (cm^2)	P (cm)	A long	Astaffe					
	4,0	1056	136	164,69	121,095869					
Staffatura tota	ale									
	Vu (KN)	Tu (KNm)	Td/Tu+Vd/Vu	Aswtot/s	Asw	S				
	719,1	35,9	0,31	746,69	157	21,03				
Verifica										
l onnou			S min							
	Aswtot/s min	0,8 d	20 cm	P/8	S max					
	450	37,6	20	17	17					
	Scelta finale: staffe fi 10 passo 15 per tutta la trave									

Tabella 72: Riepilogo armatura trasversale considerando la torsione - trave inclinata M-N-O

Trave primo piano 4-8 (b=30cm; h = 60cm); Mt = 5 KNm

Sez	zione	Md	Td	As md	As Td	As minima	14	20	As effettiva	M resistente
Pil 4	Sup	-68		339,01		540	4	0	615,44	-123,45
PII 4	Inf		74		0	135	2	0	307,72	
Dil o	Sup	-37		184,46		540	4	0	615,44	-123,45
Pil 8	Inf		49		125,32	135	2	0	307,72	
0	Sup					0	2	0	307,72	
Q	Inf	17	22	84,75	56,27	540	4	0	615,44	123,45

Tabella 73: Armature longitudinali - trave primo piano 4-8

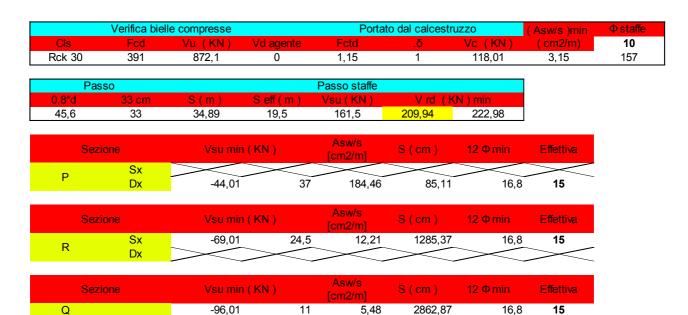


Tabella 74: Calcolo armature a taglio - Trave primo piano 4-8

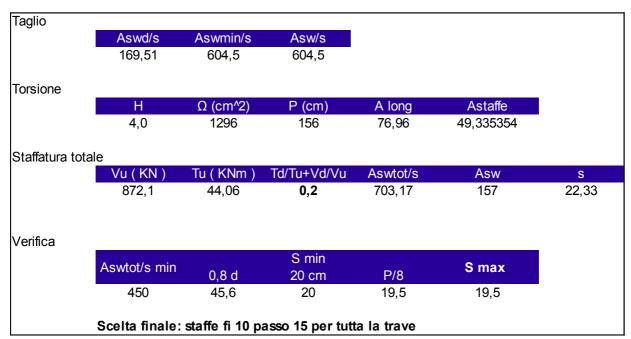


Tabella 75: Riepilogo armatura trasversale considerando la torsione - trave primo piano 4-8

Per ogni trave nel lato più lungo è stato posizionato un ferro di parete Φ 12 onde verificare la prescrizione della distanza minima dei ferri $s \le 35$ cm.

Le armature longitudinali comprendono la somma dell'armatura necessaria a flessione e a torsione, in maniera identica per la quantità di staffe.

Fondazione

Le fondazioni sono quegli elementi strutturali che permettono alla strutture di scaricare le sollecitazione sul terreno.

Il trasferimento di queste sollcitazioni deve avvenire in modo tale da non superare la resistenza del terreno sul quale poggiano e le deformazioni che si vengono a produrre devono essere contenute, al fine di evitare che la struttura in elevazione perda la sua funzionalità. In particolar modo bisogna eviatre che si creino degli abbassamenti differenziali, che sono i più pericolosi per il telaio, in quanto sono proprio questi che possono dar origine a delle sollecitazioni sugli elementi che non erano state previste in fase di progetto. Al contrario, un abbassamento uniforme della struttura, non inficia in modo singnificativo sulla stabilità, in quanto non essendoci deformazioni differenti tra i vari pilastri, le sollecitazioni rimangono le stesse di quelle di progetto. Al contrario, si possono avere delle perdite di funzionalità in quanto avendo un abbassamento della struttura, si può avere che il terreno viene ad essere a una quota diversa da quella iniziale.

In particolar modo vanno calcolate le deformazioni nel lungo termine, soprattutto quando si è in presenza di terreni argillosi-limosi che sono caratterizzati da un bassa permeabilità.

Tipologia adottata

Vi sono tre tipologie di fondazioni dirette:

- Plinti (alti o bassi)
- Travi rovesce
- Platee

Nel caso in esame si è deciso di utilizzare la tipologia di plinti isolati di tipo basso .

Carico limite

La prima fase della progettazione di una fondazione consiste nel predimensionare l'area di contatto tra l'elemento strutturale e il terreno la quale è legata alle caratteristiche del terreno stesso, ossia al carico limite che quest'ultimo può sopportare.

Per la valutazione del carico limite si è utilizzata la formula *trinomia di Terzaghi* modificata andando ad ipotizzare un'area iniziale di forma quadrata, una profondità del piano di posa D e delle caratteristiche del terreno ricavate dalla seguente tabella: ["Fondazioni" (Viggiani)]:

PROVA Tx	CU			_	Ar	gilla Lim	iosa
campione	1	2	3	•	γ	19	KN/m ³
σ 3	500	650	800	$\overline{}$	c'	50	KPa
σ 1	1270	1685	2162		φ'	32,5	0
u	220	235	256		D	1	m
σ '3	280	415	544		В	1,5	m
σ '1	1050	1450	1906		L	1,5	m
					Н	0,5	m

Tabella 76: Caratteristiche del terreno ricavate dalla prova TxCU (triassale consolidata non drenata)

Relazione trinomia di Terzaghi:

$$q_{\text{lim}} = N_q \cdot \gamma \cdot D \cdot I_q + N_c \cdot c \cdot I_c + N_{\gamma} \cdot \gamma \cdot \frac{B}{2} \cdot I_{\gamma}$$

φ	Nq	Nc	$N\gamma$
30	18	30	22
31	21	33	26
32	23	35	30
33	26	39	35
34	29	42	41
35	33	46	48

Tabella 77: Coefficienti in base all'angolo d'attrito

Coefficienti di forma per fondazione quadrata (B=L):

$$I_q = 1 + \frac{B}{L}tg(\phi) = 1,637; I_c = 1 + \frac{B}{L}\frac{N_q}{N_c} = 1,667; I_y = 1 - 0,4\frac{B}{L} = 0,6$$

Si ricava quindi, ipotizzando una sezione 2m x 2m, q_{lim} = 4,226 MPa.

Il pilastro più sollecitato è il P10 soggetto ad uno sforzo assiale pari a 1490 KN e momenti M_x =-13,53 KNm M_y =-4,20 KNm.

L'eccentricità del carico sul pilastro è pari a:

$$e_x = M_x / N = 12.40 / 1490 = 9mm$$

 $e_y = M_y / N = 4.2 / 1490 = 3mm$

quindi trascurabile.

Assumendo un coefficiente di sicurezza pari a 3 per la resistenza del terreno si ha che la tensione ammissibile è pari a:

$$\sigma_u = \frac{\sigma_{lim}}{3}$$
 quindi l'area minima di appoggio è pari a:

$$A_{\min} = \frac{N}{\sigma_u} = \frac{1490KN}{4,226Mpa/3} = 1,126m^2$$

La sezione di predimensionamento è alquanto sovradimensioata, pertanto si adotta una sezione ${\bf B}={\bf L}={\bf 1,5}~{\bf m}$.

Rieffettuando i calcoli si ha q_{lim} = 4,13 MPa e quindi:

$$A_{\min} = \frac{N}{\sigma_u} = \frac{1490KN}{4.13Mpa/3} = 1,162m^2$$
 da cui $B = L = \sqrt{A_{\min}} = 1,08m$, quindi verificata.

Corso di "Tecnica delle costruzioni" - Prof. F. Paolacci - Anno 2006/2007 - Relazione tecnica progetto - Pag. 91 di 93

Dimensionata l'area di contatto, se il centro di pressione cade al di fuori del nocciolo centrale d'inerzia (B/6; L/6) si procede con la valutazione della reazione del terreno; per fare ciò si utilizzerà la seguente relazione:

$$\sigma_{\text{max}} = \frac{N}{A} \pm \frac{M_x}{W_x} \pm \frac{M_y}{W_y}$$
 con:

N = carico verticale complessivo di calcolo applicato al plinto

$$M_x = m_x + V_v \cdot h$$

$$M_v = m_v + V_x \cdot h$$

In questo caso le sollecitazioni flettenti sono talmente modeste da far cadere la risultante dello sforzo normale a meno di un centimetro dall'asse del pilastro 10, ed essendo una sezione quadrata, il nocciolo di inerzia è 12,5 cm, quindi lo sforzo normale ricade abbondantemente all'interno di esso. Si può quindi approssimare abbondantemente la tensione come quella solamente normale, quindi con relativa precisione $\sigma_{\max} = \sigma_u$.

Dimensionamento sezione e armatura

Il plinto è di dimensioni 1,5m x 1,5m, alto 0,6 m e quindi con H/b \leq 1.

Data la disposizione delle armature sul fondo del plinto, a causa della aggressività del terreno e di possibili falde nel terreno, bisogna prevedere un copriferro maggiore di quello adottato per le armature della strutture in elevazione. In particolare si adotta un valore superiore ai **4 cm**, come prescritto dalla norma.

Si procede dividendo il plinto in quattro elementi indipendenti, che hanno un comportamento equivalente a delle mensole. In questo modo si viene a semplificare il problema, portandolo da un sistema iperstatico e tridimensionale ad uno isostatico e monodimensionale, aumentando anche la sicurezza in quanto si sovrastimano le sollecitazioni.

In questo caso, avendo un plinto quadrato 1,5 x 1,5, è sufficiente calcolare solamente una delle quattro mensole e dimensionarne la armatura, in quanto data la forma quadrata di ambo gli elementi coinvolti (plinto e relativo pilastro 10) le mensole sono evidentemente identiche tra loro.

Si procede all'individuazione del momento agente sulla sezione di incastro della mensola che ha una lunghezza di sbalzo pari a $L=\frac{(A-a)}{2}+0,15\,a=0,89\,m$.

Il carico sulla mensola è dato dalla massima pressione esercitabile dal terreno depurata dal carico agente sul plinto stesso dovuto al peso proprio dell'elemento e dal carico di terreno al di sopra dello stesso.

Si ottiene quindi un momento agente sulla sezione di incastro della mensola $M = (\sigma_{t} - p) \frac{BL^{2}}{2} = 439 \, \text{KNm}$ in quanto, dato che i momenti agenti sul plinto sono trascurabili, si considera con buona approssimazione che la sezione sia interamente compressa.

E' di facile dimostrazione che la sezione è approssimabile ad una uniformemente compressa; calcolando le tensioni:

$$\sigma_{max} = \frac{N}{A} + \frac{M}{W} = 0.72 \, MPa \text{ e } \sigma_{min} = \frac{N}{A} - \frac{M}{W} = 0.61 \, MPa$$

si nota che sono molto simili, e quindi anche per aumentare la sicurezza, trovandoci a lavorare con materiali naturali sciolti, si è preferito considerare la tensione uniforme sotto tutto il plinto.

A causa di questo meccanismo flessionale che tende la parte inferiore del plinto, si possono creare delle fessure, ragione per la quale è bene aumentare il copriferro, in particolar modo se vi è la possibilità di avere una falda a livello del piano di posa, fatto questo che potrebbe portare alla corrosione dei ferri di armatura.

Per armare la sezione considerata, al fine di poter resistere a tale momento si è disposta un' armatura pari a $A_s = \frac{M}{(0.9\,H\,Fyd)} = 86.5\,cm^2$.

Utilizzando ferri di armatura Φ 16 si rendono necessari 12 ferri disposti nelle due direzioni principali, per un ammontare di 24 ferri.

Verifica a punzonamento

Trattandosi di un plinto basso, vi è anche la necessità di una verifica a punzonamento in quanto non si hanno armature resistenti a taglio. Nel caso in cui la verifica non sia soddisfatta, si renderebbe necessaria l'introduzione di un' armatura che assorba la sollecitazione di trazione che si viene a creare. In particolare la rottura per punzonamento sul cls avviene su di una sezione tronco-conica con base il perimetro del pilastro.

Si procede calcolando la forza agente per il punzonamento dovuto al carico portato dal pilastro 10, depurato dalla forza esercitata dal terreno al di sotto del pilastro:

$$F = N - (\sigma_t - \sigma_p) A = 1337 KN$$

Individuata la forza di punzonamento, si verifica se il calcestruzzo del plinto ha la necessaria resistenza per supportare tale sollecitazione, individuando la forza di punzonamento resistente: $F_r = 0.5 \ ph f_{cid} = 2470 \ KN$

Si è quindi verificato che il plinto è sufficientemente verificato a punzonamento.

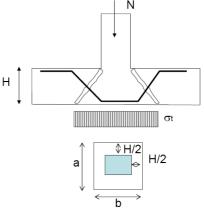
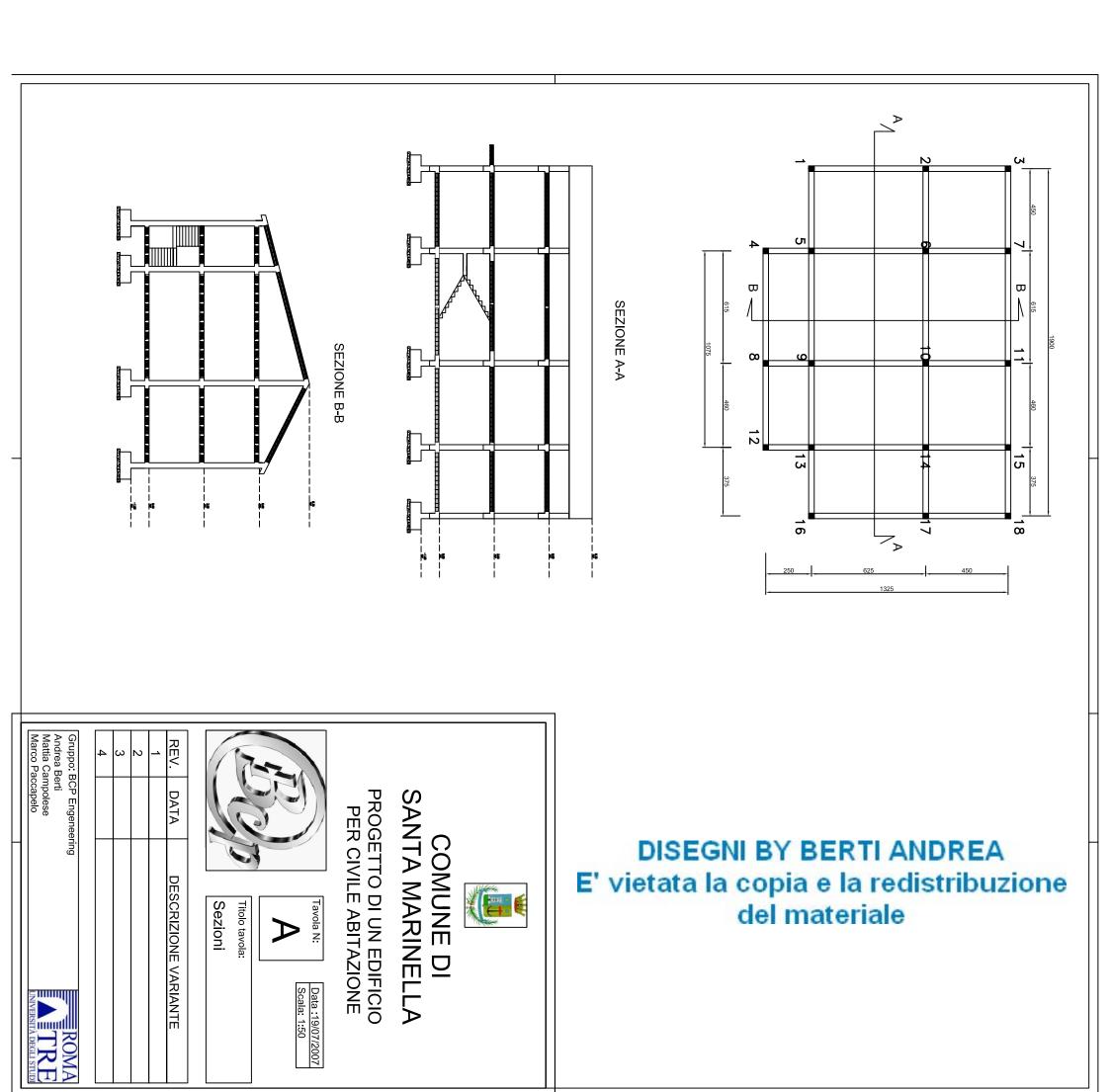
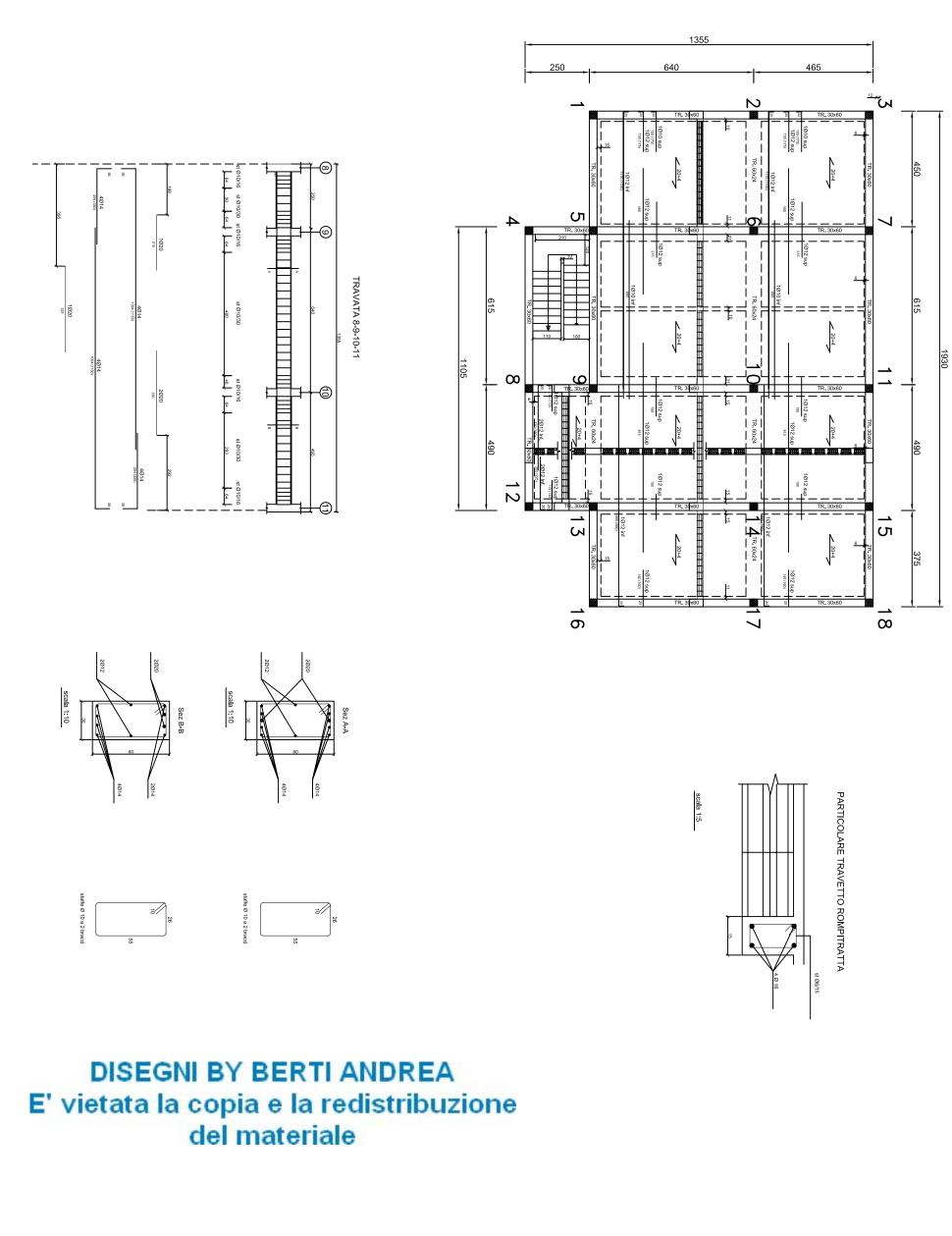
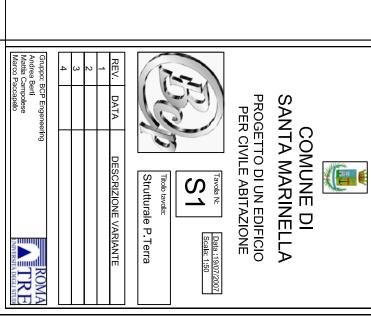
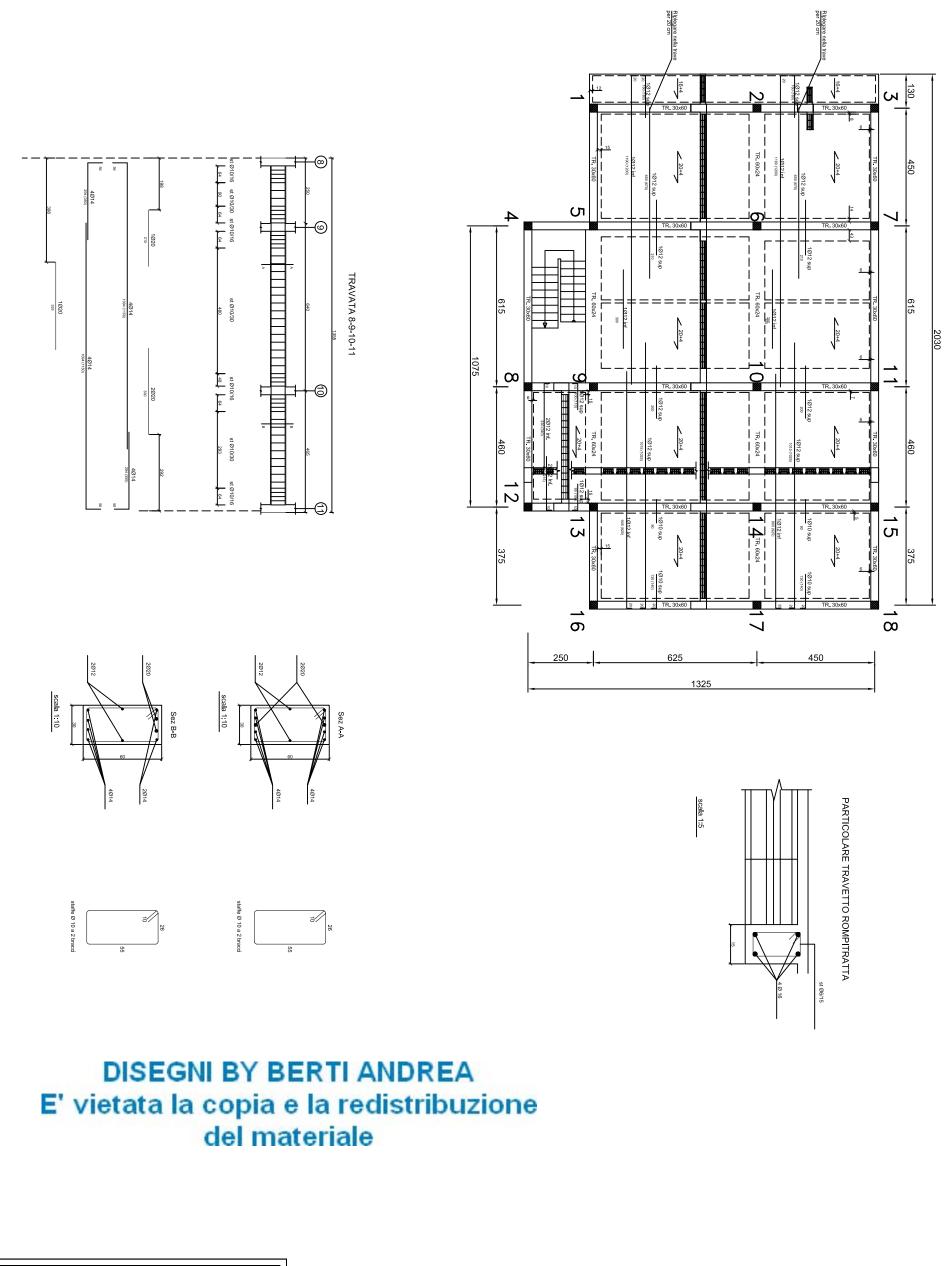





Fig. 54: Schema verifica punzonamento

Acciaio in barre Acciaio per r.e.s.	Strutture in fondazione: Tipo di cemento Classe di resistenza Rapporto acqualcemento (massimo) Classe di consistenza Max dimensione aggregato	Materiali: Conglomerato cementzio: Conglomerato cementzio: Strutture in elevazione: Tipo di cemento Classe di resistenza Classe di onsistenza Classe di consistenza Max dimensione aggregato	
: B450C : B450C	: I : 30 MPa : 0.5 : \$4 : 25 mm	: I : 30 MPa : 0.5 : S4 : 25 mm	

-Disporre nella soletta superiore del solaio una rete di ripartizione \varnothing 6/20x20 che non deve essere direttamente appoggiata sui laterizi


-l ganci delle staffe devono essere ripiegati a 135° all'interno della trave

-Raggio mandrino di piegatura delle barre:

Ø ≤ 16 = 4Ø Ø > 16 = 7Ø -Le armature indicate si riferiscono ad un travetto
-Il copriferro inferiore dei solai deve essere di 3.0 cm
-Il coprifierro delle armature delle travi deve essere 3.0 cm

SEZIONE SOLAIO TIPO

Le dimensioni indicate per la sagoma delle barre sono quelle esterne

Strutture in fondazione:
Tipo di cemento
Classe di resistenza
Rapporto acqualcemento (massi
Classe di consistenza
Max dimensione aggregato

30 MPa 0.5 S4 25 mm

Acciaio per r e s

PROGETTO DI UN EDIFICIO PER CIVILE ABITAZIONE COMUNE DI SANTA MARINELLA Tipo di cemento
Classe di resistenza
Rapporto acqualcemento (massimo)
Classe di consistenza
Max dimensione aggregato

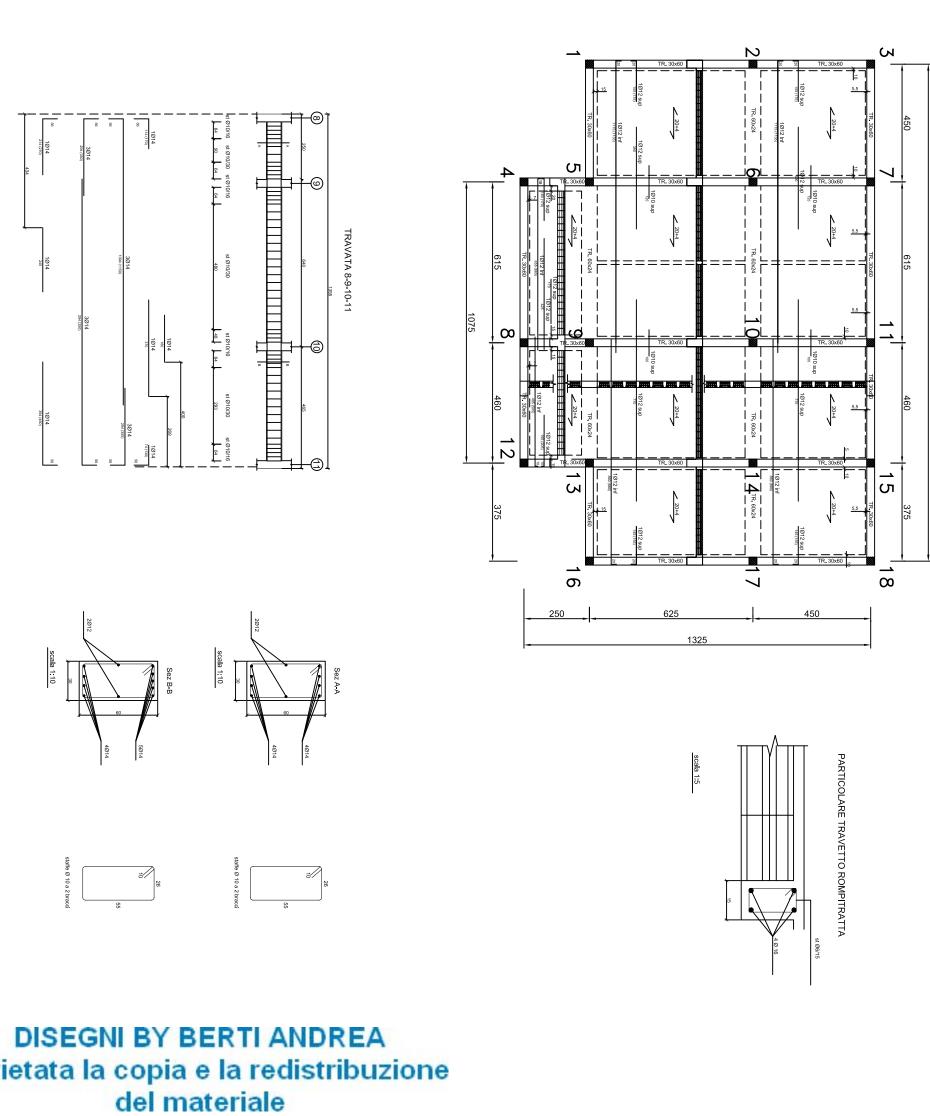
QUOTE IN CM.

-Le dimensioni indicate per la sagoma delle barre sono quelle esterne
-Disporre nella soletta superiore del solato una rete di ripartizione Ø 6/20x20
-che non deve essere direttamente appoggiata sui laterizi

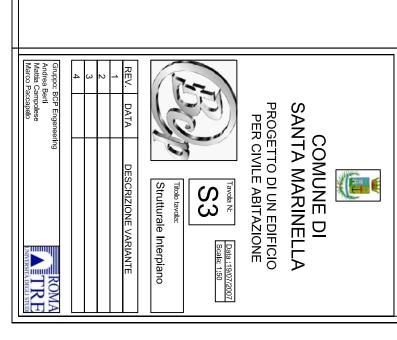
-Raggio mandrino di piegatura delle barre:

Ø ≤ 16 = 4Ø Ø > 16 = 7Ø Le armature indicate si riferiscono ad un travetto
 Il copriferro inferiore dei solai deve essere di 3.0 cm
 Il copriferro delle armature delle travi deve essere 3.0 cm

SEZIONE SOLAIO TIPO


SEZIONE SOLAIO BALCONE

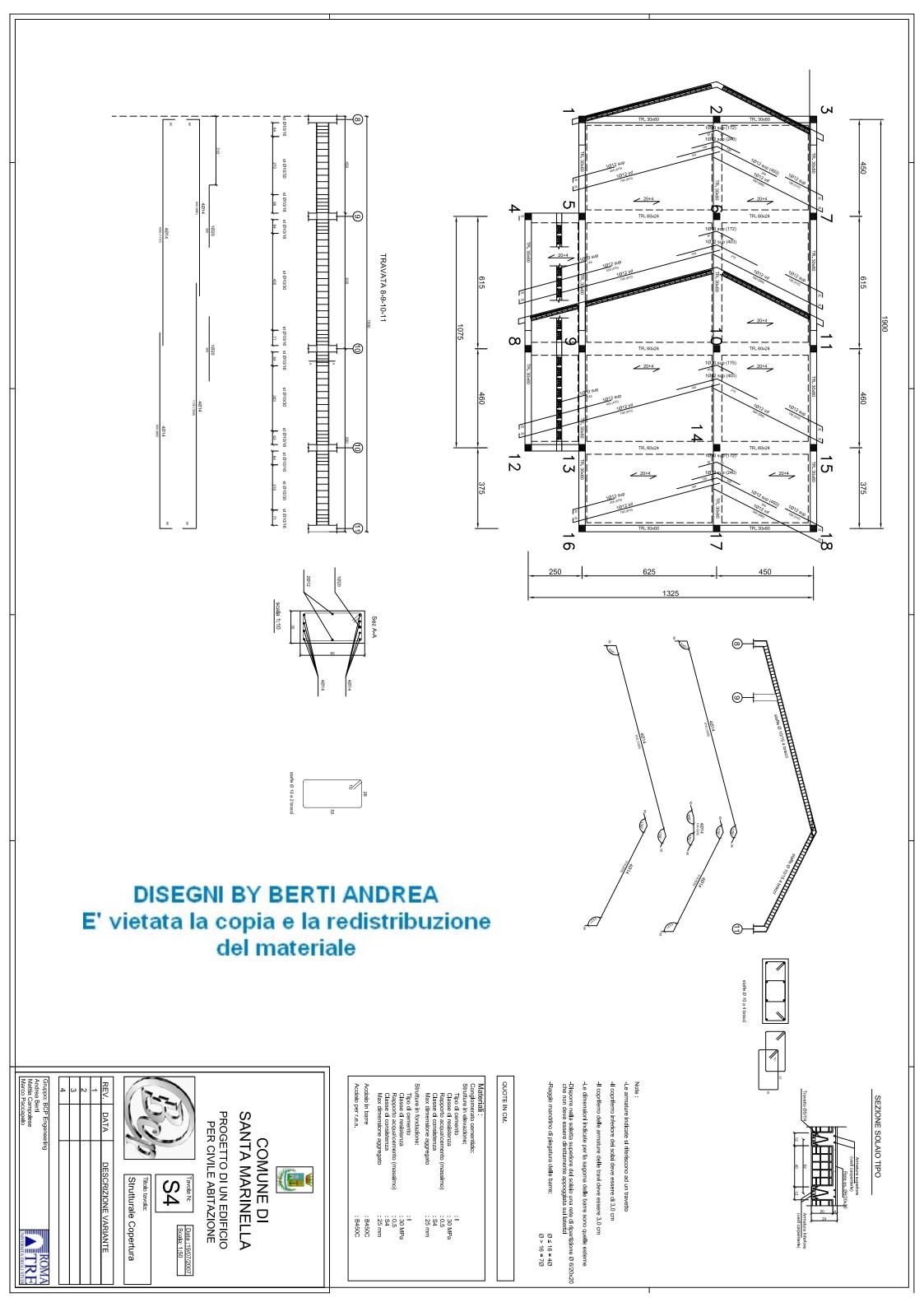
22 Amatura inferiore (ved carportiorie)



Strutturale P. Primo

S2

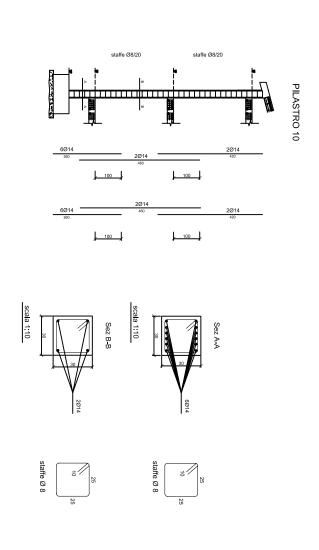
E' vietata la copia e la redistribuzione

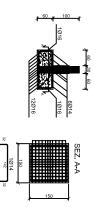

QUOTE IN CM.		
Materiali		
Conglomerato cementizio:	cementizio:	
Strutture in elevazione:	vazione:	
Tipo di cemento	ento	<u>:</u>
Classe di resistenza	esistenza	: 30 MPa
Rapporto a	Rapporto acqua\cemento (massimo)	0.5
Classe di consistenza	onsistenza	: S4
Max dimens	Max dimensione aggregato	. 25 mm
Strutture in fondazione:	dazione:	
Tipo di cemento	ento	<u>:</u>
Classe di resistenza	esistenza	: 30 MPa
Rapporto a	Rapporto acqua\cemento (massimo)	0.5
Classe di consistenza	onsistenza	: S4
Max dimens	Max dimensione aggregato	: 25 mm
Acciaio in barre		: B450C
Acciaio per r.e.s.	į,	: B450C

-Raggio mandrino di piegatura delle barre:

Ø ≤ 16 = 4Ø Ø > 16 = 7Ø

-Disporre nella soletta superiore del solaio una rete di ripartizione Ø 6/20x20 che non deve essere direttamente appoggiata sui laterizi -Le dimensioni indicate per la sagoma delle barre sono quelle esterne -Il copriferro delle armature delle travi deve essere 3.0 cm -Il copriferro inferiore dei solai deve essere di 3.0 cm -Le armature indicate si riferiscono ad un travetto


SEZIONE SOLAIO TIPO



ျ 9 0) <u>|</u>

PIANTA FILI FISSI E FONDAZIONI

DISEGNI BY BERTI ANDREA del materiale

Materiali:

Conglomerato cementizio:
Strutture in elevazione:
Tipo di cemento
Classe di resistenza
Rapporto acqui-locemento (massimo)
Classe di consistenza
Max dimensione aggregato
Strutture in fondazione:
Tipo di cemento
Classe di resistenza
Rapporto acqui-locemento (massimo)
Classe di consistenza
Rapporto acqui-locemento (massimo)
Classe di consistenza
Max dimensione aggregato

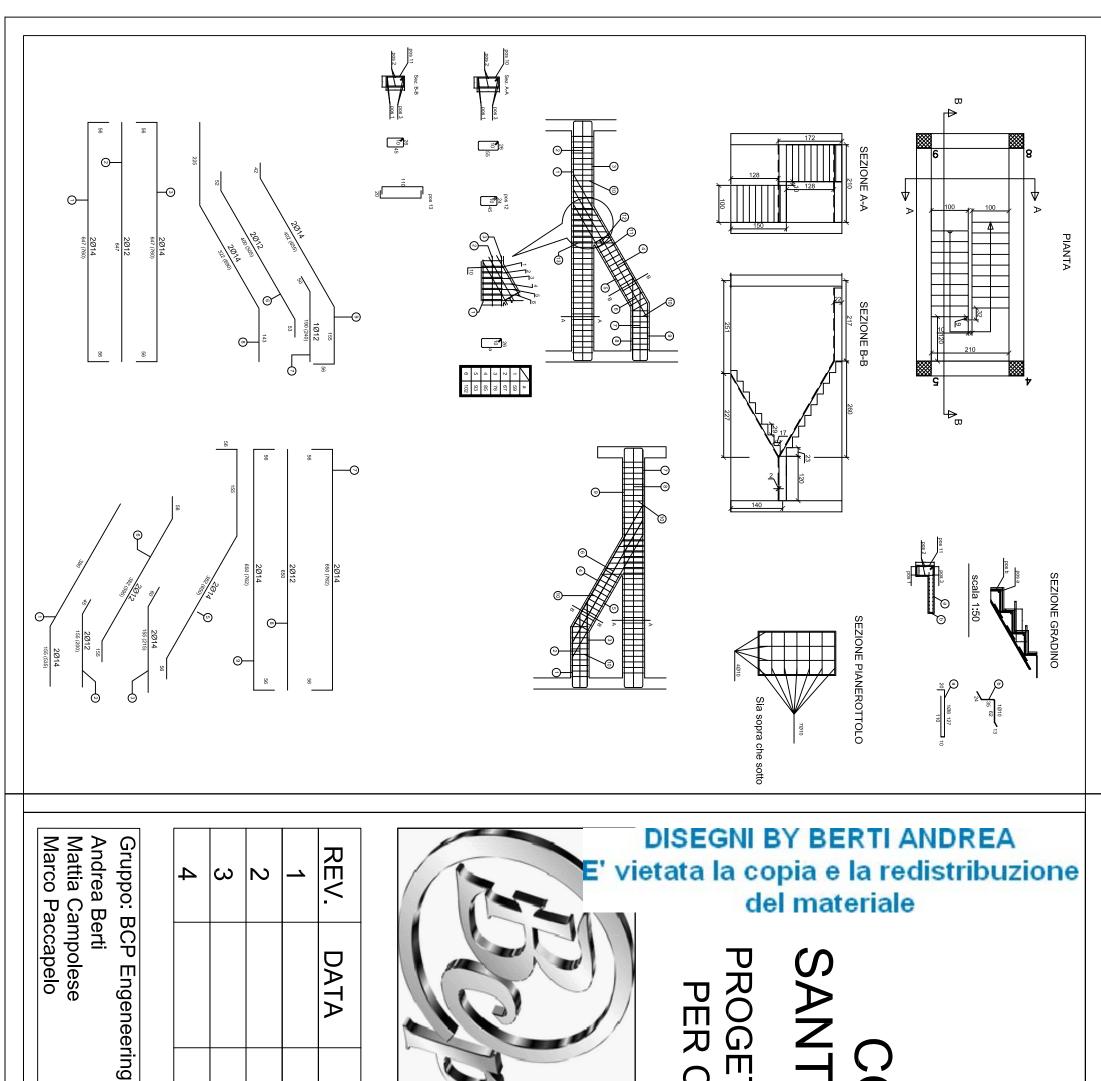
QUOTE IN CM.

-Disporre nella soletta superiore del solaio una rete di ripartizione Ø 6/20x20 che non deve essere direttamente appoggiata sul laterizi

-l ganci delle staffe devono essere ripiegati a 135° all'interno della trave

Ø ≤ 16 = 4Ø Ø > 16 = 7Ø

-Il copriferro delle armature delle travi deve essere 3.0 cm -Il copriferro inferiore dei solai deve essere di 3.0 cm -Le armature indicate si riferiscono ad un travetto


Le dimensioni indicate per la sagoma delle barre sono quelle esterne

Acciaio in barre Accialo per r.e.s.

: I : 30 MPa : 0.5 : S4 : 25 mm : B450C

E' vietata la copia e la redistribuzione

vietata la copia e la redistribuzione del materiale

Tavola N:

Scala: 1:50 Data:19/07/2007

Titolo tavola:

S

cala

DATA DESCRIZIONE VARIANTE		
DESCRIZIONE VARIANT		

ω Ν

